

Welcome to Wagtail’s documentation

Wagtail is an open source CMS written in Python [https://www.python.org/] and built on the Django web framework [https://www.djangoproject.com/].

Below are some useful links to help you get started with Wagtail.

If you’d like to get a quick feel for Wagtail, explore the Wagtail Bakery [https://divio.com/wagtail], a fully-functional interactive demo (hosted at Divio Cloud).

	First steps

	Getting started

	Your first Wagtail site

	Demo site

	Using Wagtail

	Page models

	Writing templates

	Using images in templates

	Search

	Third-party tutorials

	For editors

	Editors guide

Index

	Getting started
	Your first Wagtail site

	Demo site

	Integrating Wagtail into a Django project

	The Zen of Wagtail

	Usage guide
	Page models

	Writing templates

	Using images in templates

	Search

	Snippets

	Freeform page content using StreamField

	Permissions

	Advanced topics
	Images

	Documents

	Embedded content

	How to add Wagtail into an existing Django project

	Deploying Wagtail

	Performance

	Private pages

	Customising Wagtail

	Third-party tutorials

	Jinja2 template support

	Testing your Wagtail site

	Wagtail API

	Building a site with AMP support

	Reference
	Pages

	Contrib modules

	Management commands

	Hooks

	Signals

	Settings

	The project template

	Support

	Using Wagtail: an Editor’s guide
	Introduction

	Getting started

	Finding your way around

	Creating new pages

	Editing existing pages

	Managing documents, images, snippets and collections

	Managing Redirects

	Administrator tasks

	Browser issues

	Contributing to Wagtail
	Issue tracking

	Development

	Committing code

	UI Styleguide

	General coding guidelines

	Python coding guidelines

	HTML coding guidelines

	CSS coding guidelines

	JavaScript coding guidelines

	Wagtail’s release process

	Release notes
	Upgrading Wagtail

	Wagtail 2.8 release notes

	Wagtail 2.7.1 release notes

	Wagtail 2.7 release notes

	Wagtail 2.6.3 release notes

	Wagtail 2.6.2 release notes

	Wagtail 2.6.1 release notes

	Wagtail 2.6 release notes

	Wagtail 2.5.2 release notes

	Wagtail 2.5.1 release notes

	Wagtail 2.5 release notes

	Wagtail 2.4 release notes

	Wagtail 2.3 release notes

	Wagtail 2.2.2 release notes

	Wagtail 2.2.1 release notes

	Wagtail 2.2 release notes

	Wagtail 2.1.3 release notes

	Wagtail 2.1.2 release notes

	Wagtail 2.1.1 release notes

	Wagtail 2.1 release notes

	Wagtail 2.0.2 release notes

	Wagtail 2.0.1 release notes

	Wagtail 2.0 release notes

	Wagtail 1.13.4 release notes

	Wagtail 1.13.3 release notes

	Wagtail 1.13.2 release notes

	Wagtail 1.13.1 release notes

	Wagtail 1.13 release notes

	Wagtail 1.12.6 release notes

	Wagtail 1.12.5 release notes

	Wagtail 1.12.4 release notes

	Wagtail 1.12.3 release notes

	Wagtail 1.12.2 release notes

	Wagtail 1.12.1 release notes

	Wagtail 1.12 release notes

	Wagtail 1.11.1 release notes

	Wagtail 1.11 release notes

	Wagtail 1.10.1 release notes

	Wagtail 1.10 release notes

	Wagtail 1.9.1 release notes

	Wagtail 1.9 release notes

	Wagtail 1.8.2 release notes

	Wagtail 1.8.1 release notes

	Wagtail 1.8 release notes

	Wagtail 1.7 release notes

	Wagtail 1.6.3 release notes

	Wagtail 1.6.2 release notes

	Wagtail 1.6.1 release notes

	Wagtail 1.6 release notes

	Wagtail 1.5.3 release notes

	Wagtail 1.5.2 release notes

	Wagtail 1.5.1 release notes

	Wagtail 1.5 release notes

	Wagtail 1.4.6 release notes

	Wagtail 1.4.5 release notes

	Wagtail 1.4.4 release notes

	Wagtail 1.4.3 release notes

	Wagtail 1.4.2 release notes

	Wagtail 1.4.1 release notes

	Wagtail 1.4 release notes

	Wagtail 1.3.1 release notes

	Wagtail 1.3 release notes

	Wagtail 1.2 release notes

	Wagtail 1.1 release notes

	Wagtail 1.0 release notes

	Wagtail 0.8.10 release notes

	Wagtail 0.8.8 release notes

	Wagtail 0.8.7 release notes

	Wagtail 0.8.6 release notes

	Wagtail 0.8.5 release notes

	Wagtail 0.8.4 release notes

	Wagtail 0.8.3 release notes

	Wagtail 0.8.1 release notes

	Wagtail 0.8 release notes

	Wagtail 0.7 release notes

	Wagtail 0.6 release notes

	Wagtail 0.5 release notes

	Wagtail 0.4.1 release notes

	Wagtail 0.4 release notes

Getting started

Note

These instructions assume familiarity with virtual environments and the
Django web framework [https://www.djangoproject.com/].
For more detailed instructions, see Your first Wagtail site.
To add Wagtail to an existing Django project, see Integrating Wagtail into a Django project.

Dependencies needed for installation

	Python 3 [https://www.python.org/downloads/]

	libjpeg and zlib, libraries required for Django’s Pillow library.
See Pillow’s platform-specific installation instructions [https://pillow.readthedocs.org/en/latest/installation.html#external-libraries].

Quick install

Run the following in a virtual environment of your choice:

$ pip install wagtail

(Installing outside a virtual environment may require sudo.)

Once installed, Wagtail provides a command similar to Django’s django-admin startproject to generate a new site/project:

$ wagtail start mysite

This will create a new folder mysite, based on a template containing everything you need to get started.
More information on that template is available in
the project template reference.

Inside your mysite folder, run the setup steps necessary for any Django project:

$ pip install -r requirements.txt
$./manage.py migrate
$./manage.py createsuperuser
$./manage.py runserver

Your site is now accessible at http://localhost:8000, with the admin backend available at http://localhost:8000/admin/.

This will set you up with a new stand-alone Wagtail project.
If you’d like to add Wagtail to an existing Django project instead, see Integrating Wagtail into a Django project.

There are a few optional packages which are not installed by default but are recommended to improve performance or add features to Wagtail, including:

	Elasticsearch.

	Feature Detection.

	Your first Wagtail site

	Demo site

	Integrating Wagtail into a Django project

	The Zen of Wagtail

Your first Wagtail site

Note

This tutorial covers setting up a brand new Wagtail project.
If you’d like to add Wagtail to an existing Django project instead, see Integrating Wagtail into a Django project.

Install and run Wagtail

Install dependencies

Wagtail supports Python 3.5, 3.6, 3.7 and 3.8.

To check whether you have an appropriate version of Python 3:

$ python3 --version

If this does not return a version number or returns a version lower than 3.5, you will need to install Python 3 [https://www.python.org/downloads/].

Important

Before installing Wagtail, it is necessary to install the libjpeg and zlib libraries, which provide support for working with JPEG, PNG and GIF images (via the Python Pillow library).
The way to do this varies by platform—see Pillow’s
platform-specific installation instructions [https://pillow.readthedocs.org/en/latest/installation.html#external-libraries].

Create and activate a virtual environment

We recommend using a virtual environment, which provides an isolated Python environment.
This tutorial uses venv [https://docs.python.org/3/tutorial/venv.html], which is packaged with Python 3.

On Windows (cmd.exe):

$ python3 -m venv mysite\env
$ mysite\env\Scripts\activate.bat

On Unix or MacOS (bash):

$ python3 -m venv mysite/env
$ source mysite/env/bin/activate

For other shells see the venv documentation [https://docs.python.org/3/library/venv.html].

Note

If you’re using version control (e.g. git), mysite will be the directory for your project.
The env directory inside of it should be excluded from any version control.

Install Wagtail

Use pip, which is packaged with Python, to install Wagtail and its dependencies:

$ pip install wagtail

Generate your site

Wagtail provides a start command similar to django-admin startproject.
Running wagtail start mysite in your project will generate a new mysite folder with a few Wagtail-specific extras, including
the required project settings,
a “home” app with a blank HomePage model and basic templates,
and a sample “search” app.

Because the folder mysite was already created by venv, run wagtail start with an additional argument to specify the destination directory:

$ wagtail start mysite mysite

Install project dependencies

$ cd mysite
$ pip install -r requirements.txt

This ensures that you have the relevant versions of
Wagtail,
Django,
and any other dependencies for the project you have just created.

Create the database

If you haven’t updated the project settings, this will be a SQLite database file in the project directory.

$ python manage.py migrate

Create an admin user

$ python manage.py createsuperuser

Start the server

$ python manage.py runserver

If everything worked, http://127.0.0.1:8000 will show you a welcome page:

[image: Wagtail welcome message]

You can now access the administrative area at http://127.0.0.1:8000/admin

[image: Administrative screen]

Extend the HomePage model

Out of the box, the “home” app defines a blank HomePage model in models.py, along with a migration that creates a homepage and configures Wagtail to use it.

Edit home/models.py as follows, to add a body field to the model:

from django.db import models

from wagtail.core.models import Page
from wagtail.core.fields import RichTextField
from wagtail.admin.edit_handlers import FieldPanel

class HomePage(Page):
 body = RichTextField(blank=True)

 content_panels = Page.content_panels + [
 FieldPanel('body', classname="full"),
]

body is defined as RichTextField, a special Wagtail field. You
can use any of the Django core fields [https://docs.djangoproject.com/en/stable/ref/models/fields/]. content_panels define the
capabilities and the layout of the editing interface. More on creating Page models.

Run python manage.py makemigrations, then
python manage.py migrate to update the database with your model
changes. You must run the above commands each time you make changes to
the model definition.

You can now edit the homepage within the Wagtail admin area (go to Pages, Homepage, then Edit) to see the new body field. Enter some text into the body field, and publish the page.

The page template now needs to be updated to reflect the changes made
to the model. Wagtail uses normal Django templates to render each page
type. By default, it will look for a template filename formed from the app and model name,
separating capital letters with underscores (e.g. HomePage within the ‘home’ app becomes
home/home_page.html). This template file can exist in any location recognised by
Django’s template rules [https://docs.djangoproject.com/en/stable/intro/tutorial03/#write-views-that-actually-do-something]; conventionally it is placed under a templates folder within the app.

Edit home/templates/home/home_page.html to contain the following:

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-homepage{% endblock %}

{% block content %}
 {{ page.body|richtext }}
{% endblock %}

[image: Updated homepage]

Wagtail template tags

Wagtail provides a number of template tags & filters
which can be loaded by including {% load wagtailcore_tags %} at the top of
your template file.

In this tutorial, we use the richtext filter to escape and print the contents
of a RichTextField:

{% load wagtailcore_tags %}
{{ page.body|richtext }}

Produces:

<div class="rich-text">
 <p>
 Welcome to our new site!
 </p>
</div>

Note: You’ll need to include {% load wagtailcore_tags %} in each
template that uses Wagtail’s tags. Django will throw a TemplateSyntaxError
if the tags aren’t loaded.

A basic blog

We are now ready to create a blog. To do so, run
python manage.py startapp blog to create a new app in your Wagtail site.

Add the new blog app to INSTALLED_APPS in mysite/settings/base.py.

Blog Index and Posts

Lets start with a simple index page for our blog. In blog/models.py:

from wagtail.core.models import Page
from wagtail.core.fields import RichTextField
from wagtail.admin.edit_handlers import FieldPanel

class BlogIndexPage(Page):
 intro = RichTextField(blank=True)

 content_panels = Page.content_panels + [
 FieldPanel('intro', classname="full")
]

Run python manage.py makemigrations and python manage.py migrate.

Since the model is called BlogIndexPage, the default template name
(unless we override it) will be blog/templates/blog/blog_index_page.html. Create this file
with the following content:

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-blogindexpage{% endblock %}

{% block content %}
 <h1>{{ page.title }}</h1>

 <div class="intro">{{ page.intro|richtext }}</div>

 {% for post in page.get_children %}
 <h2>{{ post.title }}</h2>
 {{ post.specific.intro }}
 {{ post.specific.body|richtext }}
 {% endfor %}

{% endblock %}

Most of this should be familiar, but we’ll explain get_children a bit later.
Note the pageurl tag, which is similar to Django’s url tag but
takes a Wagtail Page object as an argument.

In the Wagtail admin, create a BlogIndexPage as a child of the Homepage,
make sure it has the slug “blog” on the Promote tab, and publish it.
You should now be able to access the url /blog on your site
(note how the slug from the Promote tab defines the page URL).

Now we need a model and template for our blog posts. In blog/models.py:

from django.db import models

from wagtail.core.models import Page
from wagtail.core.fields import RichTextField
from wagtail.admin.edit_handlers import FieldPanel
from wagtail.search import index

Keep the definition of BlogIndexPage, and add:

class BlogPage(Page):
 date = models.DateField("Post date")
 intro = models.CharField(max_length=250)
 body = RichTextField(blank=True)

 search_fields = Page.search_fields + [
 index.SearchField('intro'),
 index.SearchField('body'),
]

 content_panels = Page.content_panels + [
 FieldPanel('date'),
 FieldPanel('intro'),
 FieldPanel('body', classname="full"),
]

Run python manage.py makemigrations and python manage.py migrate.

Create a template at blog/templates/blog/blog_page.html:

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-blogpage{% endblock %}

{% block content %}
 <h1>{{ page.title }}</h1>
 <p class="meta">{{ page.date }}</p>

 <div class="intro">{{ page.intro }}</div>

 {{ page.body|richtext }}

 <p>Return to blog</p>

{% endblock %}

Note the use of Wagtail’s built-in get_parent() method to obtain the
URL of the blog this post is a part of.

Now create a few blog posts as children of BlogIndexPage.
Be sure to select type “Blog Page” when creating your posts.

[image: Create blog post as child of BlogIndex]

[image: Choose type BlogPost]

Wagtail gives you full control over what kinds of content can be created under
various parent content types. By default, any page type can be a child of any
other page type.

[image: Page edit screen]

You should now have the very beginnings of a working blog.
Access the /blog URL and you should see something like this:

[image: Blog basics]

Titles should link to post pages, and a link back to the blog’s
homepage should appear in the footer of each post page.

Parents and Children

Much of the work you’ll be doing in Wagtail revolves around the concept of hierarchical
“tree” structures consisting of nodes and leaves (see Theory).
In this case, the BlogIndexPage is a “node” and individual BlogPage instances
are the “leaves”.

Take another look at the guts of blog_index_page.html:

{% for post in page.get_children %}
 <h2>{{ post.title }}</h2>
 {{ post.specific.intro }}
 {{ post.specific.body|richtext }}
{% endfor %}

Every “page” in Wagtail can call out to its parent or children
from its own position in the hierarchy. But why do we have to
specify post.specific.intro rather than post.intro?
This has to do with the way we defined our model:

class BlogPage(Page):

The get_children() method gets us a list of instances of the Page base class.
When we want to reference properties of the instances that inherit from the base class,
Wagtail provides the specific method that retrieves the actual BlogPage record.
While the “title” field is present on the base Page model, “intro” is only present
on the BlogPage model, so we need .specific to access it.

To tighten up template code like this, we could use Django’s with tag:

{% for post in page.get_children %}
 {% with post=post.specific %}
 <h2>{{ post.title }}</h2>
 <p>{{ post.intro }}</p>
 {{ post.body|richtext }}
 {% endwith %}
{% endfor %}

When you start writing more customized Wagtail code, you’ll find a whole set of QuerySet
modifiers to help you navigate the hierarchy.

Given a page object 'somepage':
MyModel.objects.descendant_of(somepage)
child_of(page) / not_child_of(somepage)
ancestor_of(somepage) / not_ancestor_of(somepage)
parent_of(somepage) / not_parent_of(somepage)
sibling_of(somepage) / not_sibling_of(somepage)
... and ...
somepage.get_children()
somepage.get_ancestors()
somepage.get_descendants()
somepage.get_siblings()

For more information, see: Page QuerySet reference

Overriding Context

There are a couple of problems with our blog index view:

	Blogs generally display content in reverse chronological order

	We want to make sure we’re only displaying published content.

To accomplish these things, we need to do more than just grab the index
page’s children in the template. Instead, we’ll want to modify the
QuerySet in the model definition. Wagtail makes this possible via
the overridable get_context() method. Modify your BlogIndexPage
model like this:

class BlogIndexPage(Page):
 intro = RichTextField(blank=True)

 def get_context(self, request):
 # Update context to include only published posts, ordered by reverse-chron
 context = super().get_context(request)
 blogpages = self.get_children().live().order_by('-first_published_at')
 context['blogpages'] = blogpages
 return context

All we’ve done here is retrieve the original context, create a custom QuerySet,
add it to the retrieved context, and return the modified context back to the view.
You’ll also need to modify your blog_index_page.html template slightly.
Change:

{% for post in page.get_children %} to {% for post in blogpages %}

Now try unpublishing one of your posts - it should disappear from the blog index
page. The remaining posts should now be sorted with the most recently published
posts first.

Images

Let’s add the ability to attach an image gallery to our blog posts. While it’s possible to simply insert images into the body rich text field, there are several advantages to setting up our gallery images as a new dedicated object type within the database - this way, you have full control of the layout and styling of the images on the template, rather than having to lay them out in a particular way within the rich text field. It also makes it possible for the images to be used elsewhere, independently of the blog text - for example, displaying a thumbnail on the blog index page.

Add a new BlogPageGalleryImage model to models.py:

from django.db import models

New imports added for ParentalKey, Orderable, InlinePanel, ImageChooserPanel

from modelcluster.fields import ParentalKey

from wagtail.core.models import Page, Orderable
from wagtail.core.fields import RichTextField
from wagtail.admin.edit_handlers import FieldPanel, InlinePanel
from wagtail.images.edit_handlers import ImageChooserPanel
from wagtail.search import index

... (Keep the definition of BlogIndexPage, and update BlogPage:)

class BlogPage(Page):
 date = models.DateField("Post date")
 intro = models.CharField(max_length=250)
 body = RichTextField(blank=True)

 search_fields = Page.search_fields + [
 index.SearchField('intro'),
 index.SearchField('body'),
]

 content_panels = Page.content_panels + [
 FieldPanel('date'),
 FieldPanel('intro'),
 FieldPanel('body', classname="full"),
 InlinePanel('gallery_images', label="Gallery images"),
]

class BlogPageGalleryImage(Orderable):
 page = ParentalKey(BlogPage, on_delete=models.CASCADE, related_name='gallery_images')
 image = models.ForeignKey(
 'wagtailimages.Image', on_delete=models.CASCADE, related_name='+'
)
 caption = models.CharField(blank=True, max_length=250)

 panels = [
 ImageChooserPanel('image'),
 FieldPanel('caption'),
]

Run python manage.py makemigrations and python manage.py migrate.

There are a few new concepts here, so let’s take them one at a time:

Inheriting from Orderable adds a sort_order field to the model, to keep track of the ordering of images in the gallery.

The ParentalKey to BlogPage is what attaches the gallery images to a specific page. A ParentalKey works similarly to a ForeignKey, but also defines BlogPageGalleryImage as a “child” of the BlogPage model, so that it’s treated as a fundamental part of the page in operations like submitting for moderation, and tracking revision history.

image is a ForeignKey to Wagtail’s built-in Image model, where the images themselves are stored. This comes with a dedicated panel type, ImageChooserPanel, which provides a pop-up interface for choosing an existing image or uploading a new one. This way, we allow an image to exist in multiple galleries - effectively, we’ve created a many-to-many relationship between pages and images.

Specifying on_delete=models.CASCADE on the foreign key means that if the image is deleted from the system, the gallery entry is deleted as well. (In other situations, it might be appropriate to leave the entry in place - for example, if an “our staff” page included a list of people with headshots, and one of those photos was deleted, we’d rather leave the person in place on the page without a photo. In this case, we’d set the foreign key to blank=True, null=True, on_delete=models.SET_NULL.)

Finally, adding the InlinePanel to BlogPage.content_panels makes the gallery images available on the editing interface for BlogPage.

Adjust your blog page template to include the images:

{% extends "base.html" %}

{% load wagtailcore_tags wagtailimages_tags %}

{% block body_class %}template-blogpage{% endblock %}

{% block content %}
 <h1>{{ page.title }}</h1>
 <p class="meta">{{ page.date }}</p>

 <div class="intro">{{ page.intro }}</div>

 {{ page.body|richtext }}

 {% for item in page.gallery_images.all %}
 <div style="float: left; margin: 10px">
 {% image item.image fill-320x240 %}
 <p>{{ item.caption }}</p>
 </div>
 {% endfor %}

 <p>Return to blog</p>

{% endblock %}

Here we use the {% image %} tag (which exists in the wagtailimages_tags library, imported at the top of the template) to insert an element, with a fill-320x240 parameter to indicate that the image should be resized and cropped to fill a 320x240 rectangle. You can read more about using images in templates in the docs.

[image: A blog post sample]

Since our gallery images are database objects in their own right, we can now query and re-use them independently of the blog post body. Let’s define a main_image method, which returns the image from the first gallery item (or None if no gallery items exist):

class BlogPage(Page):
 date = models.DateField("Post date")
 intro = models.CharField(max_length=250)
 body = RichTextField(blank=True)

 def main_image(self):
 gallery_item = self.gallery_images.first()
 if gallery_item:
 return gallery_item.image
 else:
 return None

 search_fields = Page.search_fields + [
 index.SearchField('intro'),
 index.SearchField('body'),
]

 content_panels = Page.content_panels + [
 FieldPanel('date'),
 FieldPanel('intro'),
 FieldPanel('body', classname="full"),
 InlinePanel('gallery_images', label="Gallery images"),
]

This method is now available from our templates. Update blog_index_page.html to include the main image as a thumbnail alongside each post:

{% load wagtailcore_tags wagtailimages_tags %}

...

{% for post in blogpages %}
 {% with post=post.specific %}
 <h2>{{ post.title }}</h2>

 {% with post.main_image as main_image %}
 {% if main_image %}{% image main_image fill-160x100 %}{% endif %}
 {% endwith %}

 <p>{{ post.intro }}</p>
 {{ post.body|richtext }}
 {% endwith %}
{% endfor %}

Tagging Posts

Let’s say we want to let editors “tag” their posts, so that readers can, e.g.,
view all bicycle-related content together. For this, we’ll need to invoke
the tagging system bundled with Wagtail, attach it to the BlogPage
model and content panels, and render linked tags on the blog post template.
Of course, we’ll need a working tag-specific URL view as well.

First, alter models.py once more:

from django.db import models

New imports added for ClusterTaggableManager, TaggedItemBase, MultiFieldPanel

from modelcluster.fields import ParentalKey
from modelcluster.contrib.taggit import ClusterTaggableManager
from taggit.models import TaggedItemBase

from wagtail.core.models import Page, Orderable
from wagtail.core.fields import RichTextField
from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel
from wagtail.images.edit_handlers import ImageChooserPanel
from wagtail.search import index

... (Keep the definition of BlogIndexPage)

class BlogPageTag(TaggedItemBase):
 content_object = ParentalKey(
 'BlogPage',
 related_name='tagged_items',
 on_delete=models.CASCADE
)

class BlogPage(Page):
 date = models.DateField("Post date")
 intro = models.CharField(max_length=250)
 body = RichTextField(blank=True)
 tags = ClusterTaggableManager(through=BlogPageTag, blank=True)

 # ... (Keep the main_image method and search_fields definition)

 content_panels = Page.content_panels + [
 MultiFieldPanel([
 FieldPanel('date'),
 FieldPanel('tags'),
], heading="Blog information"),
 FieldPanel('intro'),
 FieldPanel('body'),
 InlinePanel('gallery_images', label="Gallery images"),
]

Run python manage.py makemigrations and python manage.py migrate.

Note the new modelcluster and taggit imports, the addition of a new
BlogPageTag model, and the addition of a tags field on BlogPage.
We’ve also taken the opportunity to use a MultiFieldPanel in content_panels
to group the date and tags fields together for readability.

Edit one of your BlogPage instances, and you should now be able to tag posts:

[image: Tagging a post]

To render tags on a BlogPage, add this to blog_page.html:

{% if page.tags.all.count %}
 <div class="tags">
 <h3>Tags</h3>
 {% for tag in page.tags.all %}
 <button type="button">{{ tag }}</button>
 {% endfor %}
 </div>
{% endif %}

Notice that we’re linking to pages here with the builtin slugurl
tag rather than pageurl, which we used earlier. The difference is that slugurl takes a
Page slug (from the Promote tab) as an argument. pageurl is more commonly used because it
is unambiguous and avoids extra database lookups. But in the case of this loop, the Page object
isn’t readily available, so we fall back on the less-preferred slugurl tag.

Visiting a blog post with tags should now show a set of linked
buttons at the bottom - one for each tag. However, clicking a button
will get you a 404, since we haven’t yet defined a “tags” view. Add to models.py:

class BlogTagIndexPage(Page):

 def get_context(self, request):

 # Filter by tag
 tag = request.GET.get('tag')
 blogpages = BlogPage.objects.filter(tags__name=tag)

 # Update template context
 context = super().get_context(request)
 context['blogpages'] = blogpages
 return context

Note that this Page-based model defines no fields of its own.
Even without fields, subclassing Page makes it a part of the
Wagtail ecosystem, so that you can give it a title and URL in the
admin, and so that you can manipulate its contents by returning
a QuerySet from its get_context() method.

Migrate this in, then create a new BlogTagIndexPage in the admin.
You’ll probably want to create the new page/view as a child of Homepage,
parallel to your Blog index. Give it the slug “tags” on the Promote tab.

Access /tags and Django will tell you what you probably already knew:
you need to create a template blog/blog_tag_index_page.html:

{% extends "base.html" %}
{% load wagtailcore_tags %}

{% block content %}

 {% if request.GET.tag|length %}
 <h4>Showing pages tagged "{{ request.GET.tag }}"</h4>
 {% endif %}

 {% for blogpage in blogpages %}

 <p>
 {{ blogpage.title }}

 <small>Revised: {{ blogpage.latest_revision_created_at }}</small>

 {% if blogpage.author %}
 <p>By {{ blogpage.author.profile }}</p>
 {% endif %}
 </p>

 {% empty %}
 No pages found with that tag.
 {% endfor %}

{% endblock %}

We’re calling the built-in latest_revision_created_at field on the Page
model - handy to know this is always available.

We haven’t yet added an “author” field to our BlogPage model, nor do we have
a Profile model for authors - we’ll leave those as an exercise for the reader.

Clicking the tag button at the bottom of a BlogPost should now render a page
something like this:

[image: A simple tag view]

Categories

Let’s add a category system to our blog. Unlike tags, where a page author can bring a tag into existence simply by using it on a page, our categories will be a fixed list, managed by the site owner through a separate area of the admin interface.

First, we define a BlogCategory model. A category is not a page in its own right, and so we define it as a standard Django models.Model rather than inheriting from Page. Wagtail introduces the concept of “snippets” for reusable pieces of content that need to be managed through the admin interface, but do not exist as part of the page tree themselves; a model can be registered as a snippet by adding the @register_snippet decorator. All the field types we’ve used so far on pages can be used on snippets too - here we’ll give each category an icon image as well as a name. Add to blog/models.py:

from wagtail.snippets.models import register_snippet

@register_snippet
class BlogCategory(models.Model):
 name = models.CharField(max_length=255)
 icon = models.ForeignKey(
 'wagtailimages.Image', null=True, blank=True,
 on_delete=models.SET_NULL, related_name='+'
)

 panels = [
 FieldPanel('name'),
 ImageChooserPanel('icon'),
]

 def __str__(self):
 return self.name

 class Meta:
 verbose_name_plural = 'blog categories'

Note

Note that we are using panels rather than content_panels here - since snippets generally have no need for fields such as slug or publish date, the editing interface for them is not split into separate ‘content’ / ‘promote’ / ‘settings’ tabs as standard, and so there is no need to distinguish between ‘content panels’ and ‘promote panels’.

Migrate this change in, and create a few categories through the Snippets area which now appears in the admin menu.

We can now add categories to the BlogPage model, as a many-to-many field. The field type we use for this is ParentalManyToManyField - this is a variant of the standard Django ManyToManyField which ensures that the chosen objects are correctly stored against the page record in the revision history, in much the same way that ParentalKey replaces ForeignKey for one-to-many relations.

New imports added for forms and ParentalManyToManyField
from django import forms
from django.db import models

from modelcluster.fields import ParentalKey, ParentalManyToManyField
from modelcluster.contrib.taggit import ClusterTaggableManager
from taggit.models import TaggedItemBase

...

class BlogPage(Page):
 date = models.DateField("Post date")
 intro = models.CharField(max_length=250)
 body = RichTextField(blank=True)
 tags = ClusterTaggableManager(through=BlogPageTag, blank=True)
 categories = ParentalManyToManyField('blog.BlogCategory', blank=True)

 # ... (Keep the main_image method and search_fields definition)

 content_panels = Page.content_panels + [
 MultiFieldPanel([
 FieldPanel('date'),
 FieldPanel('tags'),
 FieldPanel('categories', widget=forms.CheckboxSelectMultiple),
], heading="Blog information"),
 FieldPanel('intro'),
 FieldPanel('body'),
 InlinePanel('gallery_images', label="Gallery images"),
]

Here we’re making use of the widget keyword argument on the FieldPanel definition to specify a checkbox-based widget instead of the default multiple select box, as this is often considered more user-friendly.

Finally, we can update the blog_page.html template to display the categories:

<h1>{{ page.title }}</h1>
<p class="meta">{{ page.date }}</p>

{% with categories=page.categories.all %}
 {% if categories %}
 <h3>Posted in:</h3>

 {% for category in categories %}
 <li style="display: inline">
 {% image category.icon fill-32x32 style="vertical-align: middle" %}
 {{ category.name }}

 {% endfor %}

 {% endif %}
{% endwith %}

[image: A blog post with categories]

Where next

	Read the Wagtail topics and reference documentation

	Learn how to implement StreamField for freeform page content

	Browse through the advanced topics section and read third-party tutorials

Demo site

To create a new site on Wagtail we recommend the wagtail start command in Getting started; however, a demo site, The Wagtail Bakery, exists containing example page types and models. We also recommend you use the demo site for testing during development of Wagtail itself.

The repo and installation instructions can be found here: https://github.com/wagtail/bakerydemo

Integrating Wagtail into a Django project

Wagtail provides the wagtail start command and project template to get you started with a new Wagtail project as quickly as possible, but it’s easy to integrate Wagtail into an existing Django project too.

Wagtail is currently compatible with Django 2.1, 2.2 and 3.0. First, install the wagtail package from PyPI:

$ pip install wagtail

or add the package to your existing requirements file. This will also install the Pillow library as a dependency, which requires libjpeg and zlib - see Pillow’s platform-specific installation instructions [https://pillow.readthedocs.org/en/latest/installation.html#external-libraries].

Settings

In your settings file, add the following apps to INSTALLED_APPS:

'wagtail.contrib.forms',
'wagtail.contrib.redirects',
'wagtail.embeds',
'wagtail.sites',
'wagtail.users',
'wagtail.snippets',
'wagtail.documents',
'wagtail.images',
'wagtail.search',
'wagtail.admin',
'wagtail.core',

'modelcluster',
'taggit',

Add the following entries to MIDDLEWARE:

'wagtail.core.middleware.SiteMiddleware',
'wagtail.contrib.redirects.middleware.RedirectMiddleware',

Note

Wagtail is currently incompatible with projects using django.contrib.sites.middleware.CurrentSiteMiddleware, as both this and wagtail.core.middleware.SiteMiddleware set the attribute request.site.

Add a STATIC_ROOT setting, if your project does not have one already:

STATIC_ROOT = os.path.join(BASE_DIR, 'static')

Add MEDIA_ROOT and MEDIA_URL settings, if your project does not have these already:

MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
MEDIA_URL = '/media/'

Add a WAGTAIL_SITE_NAME - this will be displayed on the main dashboard of the Wagtail admin backend:

WAGTAIL_SITE_NAME = 'My Example Site'

Various other settings are available to configure Wagtail’s behaviour - see Settings.

URL configuration

Now make the following additions to your urls.py file:

from django.urls import path, re_path, include

from wagtail.admin import urls as wagtailadmin_urls
from wagtail.core import urls as wagtail_urls
from wagtail.documents import urls as wagtaildocs_urls

urlpatterns = [
 ...
 re_path(r'^cms/', include(wagtailadmin_urls)),
 re_path(r'^documents/', include(wagtaildocs_urls)),
 re_path(r'^pages/', include(wagtail_urls)),
 ...
]

The URL paths here can be altered as necessary to fit your project’s URL scheme.

wagtailadmin_urls provides the admin interface for Wagtail. This is separate from the Django admin interface (django.contrib.admin); Wagtail-only projects typically host the Wagtail admin at /admin/, but if this would clash with your project’s existing admin backend then an alternative path can be used, such as /cms/ here.

wagtaildocs_urls is the location from where document files will be served. This can be omitted if you do not intend to use Wagtail’s document management features.

wagtail_urls is the base location from where the pages of your Wagtail site will be served. In the above example, Wagtail will handle URLs under /pages/, leaving the root URL and other paths to be handled as normal by your Django project. If you want Wagtail to handle the entire URL space including the root URL, this can be replaced with:

re_path(r'', include(wagtail_urls)),

In this case, this should be placed at the end of the urlpatterns list, so that it does not override more specific URL patterns.

Finally, your project needs to be set up to serve user-uploaded files from MEDIA_ROOT. Your Django project may already have this in place, but if not, add the following snippet to urls.py:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
 # ... the rest of your URLconf goes here ...
] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Note that this only works in development mode (DEBUG = True); in production, you will need to configure your web server to serve files from MEDIA_ROOT. For further details, see the Django documentation: Serving files uploaded by a user during development [https://docs.djangoproject.com/en/stable/howto/static-files/#serving-files-uploaded-by-a-user-during-development] and Deploying static files [https://docs.djangoproject.com/en/stable/howto/static-files/deployment/].

With this configuration in place, you are ready to run ./manage.py migrate to create the database tables used by Wagtail.

User accounts

Superuser accounts receive automatic access to the Wagtail admin interface; use ./manage.py createsuperuser if you don’t already have one. Custom user models are supported, with some restrictions; Wagtail uses an extension of Django’s permissions framework, so your user model must at minimum inherit from AbstractBaseUser and PermissionsMixin.

Start developing

You’re now ready to add a new app to your Django project (via ./manage.py startapp - remember to add it to INSTALLED_APPS) and set up page models, as described in Your first Wagtail site.

Note that there’s one small difference when not using the Wagtail project template: Wagtail creates an initial homepage of the basic type Page, which does not include any content fields beyond the title. You’ll probably want to replace this with your own HomePage class - when you do so, ensure that you set up a site record (under Settings / Sites in the Wagtail admin) to point to the new homepage.

The Zen of Wagtail

Wagtail has been born out of many years of experience building websites, learning approaches that work and ones that don’t, and striking a balance between power and simplicity, structure and flexibility. We hope you’ll find that Wagtail is in that sweet spot. However, as a piece of software, Wagtail can only take that mission so far - it’s now up to you to create a site that’s beautiful and a joy to work with. So, while it’s tempting to rush ahead and start building, it’s worth taking a moment to understand the design principles that Wagtail is built on.

In the spirit of “The Zen of Python” [https://www.python.org/dev/peps/pep-0020/], The Zen of Wagtail is a set of guiding principles, both for building websites in Wagtail, and for the ongoing development of Wagtail itself.

Wagtail is not an instant website in a box.

You can’t make a beautiful website by plugging off-the-shelf modules together - expect to write code.

Always wear the right hat.

The key to using Wagtail effectively is to recognise that there are multiple roles involved in creating a website: the content author, site administrator, developer and designer. These may well be different people, but they don’t have to be - if you’re using Wagtail to build your personal blog, you’ll probably find yourself hopping between those different roles. Either way, it’s important to be aware of which of those hats you’re wearing at any moment, and to use the right tools for that job. A content author or site administrator will do the bulk of their work through the Wagtail admin interface; a developer or designer will spend most of their time writing Python, HTML or CSS code. This is a good thing: Wagtail isn’t designed to replace the job of programming. Maybe one day someone will come up with a drag-and-drop UI for building websites that’s as powerful as writing code, but Wagtail is not that tool, and does not try to be.

A common mistake is to push too much power and responsibility into the hands of the content author and site administrator - indeed, if those people are your clients, they’ll probably be loudly clamouring for exactly that. The success of your site depends on your ability to say no. The real power of content management comes not from handing control over to CMS users, but from setting clear boundaries between the different roles. Amongst other things, this means not having editors doing design and layout within the content editing interface, and not having site administrators building complex interaction workflows that would be better achieved in code.

A CMS should get information out of an editor’s head and into a database, as efficiently and directly as possible.

Whether your site is about cars, cats, cakes or conveyancing, your content authors will be arriving at the Wagtail admin interface with some domain-specific information they want to put up on the website. Your aim as a site builder is to extract and store this information in its raw form - not one particular author’s idea of how that information should look.

Keeping design concerns out of page content has numerous advantages. It ensures that the design remains consistent across the whole site, not subject to the whims of editors from one day to the next. It allows you to make full use of the informational content of the pages - for example, if your pages are about events, then having a dedicated “Event” page type with data fields for the event date and location will let you present the events in a calendar view or filtered listing, which wouldn’t be possible if those were just implemented as different styles of heading on a generic page. Finally, if you redesign the site at some point in the future, or move it to a different platform entirely, you can be confident that the site content will work in its new setting, and not be reliant on being formatted a particular way.

Suppose a content author comes to you with a request: “We need this text to be in bright pink Comic Sans”. Your question to them should be “Why? What’s special about this particular bit of text?” If the reply is “I just like the look of it”, then you’ll have to gently persuade them that it’s not up to them to make design choices. (Sorry.) But if the answer is “it’s for our Children’s section”, then that gives you a way to divide the editorial and design concerns: give your editors the ability to designate certain pages as being “the Children’s section” (through tagging, different page models, or the site hierarchy) and let designers decide how to apply styles based on that.

The best user interface for a programmer is usually a programming language.

A common sight in content management systems is a point-and-click interface to let you define the data model that makes up a page:

[image: Drupal's content type editing interface]

It looks nice in the sales pitch, but in reality, no CMS end-user can realistically make that kind of fundamental change - on a live site, no less - unless they have a programmer’s insight into how the site is built, and what impact the change will have. As such, it will always be the programmer’s job to negotiate that point-and-click interface - all you’ve done is taken them away from the comfortable world of writing code, where they have a whole ecosystem of tools, from text editors to version control systems, to help them develop, test and deploy their code changes.

Wagtail recognises that most programming tasks are best done by writing code, and does not try to turn them into box-filling exercises when there’s no good reason to. Likewise, when building functionality for your site, you should keep in mind that some features are destined to be maintained by the programmer rather than a content editor, and consider whether making them configurable through the Wagtail admin is going to be more of a hindrance than a convenience. For example, Wagtail provides a form builder to allow content authors to create general-purpose data collection forms. You might be tempted to use this as the basis for more complex forms that integrate with (for example) a CRM system or payment processor - however, in this case there’s no way to edit the form fields without rewriting the backend logic, so making them editable through Wagtail has limited value. More likely, you’d be better off building these using Django’s form framework, where the form fields are defined entirely in code.

Usage guide

	Page models
	An example Wagtail page model

	Writing page models

	Template rendering

	Inline models

	Working with pages

	Tips

	Writing templates
	Templates

	Static assets

	Template tags & filters

	Wagtail User Bar

	Varying output between preview and live

	Using images in templates
	More control over the img tag

	The attrs shortcut

	Alternative HTML tags

	Images embedded in rich text

	Output image format

	Background color

	JPEG image quality

	Search
	Indexing

	Searching

	Backends

	Indexing

	Searching

	Backends

	Snippets
	Snippet Models

	Including Snippets in Template Tags

	Binding Pages to Snippets

	Making Snippets Searchable

	Tagging snippets

	Freeform page content using StreamField
	Using StreamField

	Basic block types

	Structural block types

	Example: PersonBlock

	Template rendering

	BoundBlocks and values

	Custom editing interfaces for StructBlock

	Custom value class for StructBlock

	Custom block types

	Migrations

	Permissions
	Page permissions

	Image / document permissions

Page models

Each page type (a.k.a. content type) in Wagtail is represented by a Django model. All page models must inherit from the wagtail.core.models.Page class.

As all page types are Django models, you can use any field type that Django provides. See Model field reference [https://docs.djangoproject.com/en/stable/ref/models/fields/] for a complete list of field types you can use. Wagtail also provides RichTextField which provides a WYSIWYG editor for editing rich-text content.

Django models

If you’re not yet familiar with Django models, have a quick look at the following links to get you started:

	Creating models [https://docs.djangoproject.com/en/stable/intro/tutorial02/#creating-models]

	Model syntax [https://docs.djangoproject.com/en/stable/topics/db/models/]

An example Wagtail page model

This example represents a typical blog post:

from django.db import models

from modelcluster.fields import ParentalKey

from wagtail.core.models import Page, Orderable
from wagtail.core.fields import RichTextField
from wagtail.admin.edit_handlers import FieldPanel, MultiFieldPanel, InlinePanel
from wagtail.images.edit_handlers import ImageChooserPanel
from wagtail.search import index

class BlogPage(Page):

 # Database fields

 body = RichTextField()
 date = models.DateField("Post date")
 feed_image = models.ForeignKey(
 'wagtailimages.Image',
 null=True,
 blank=True,
 on_delete=models.SET_NULL,
 related_name='+'
)

 # Search index configuration

 search_fields = Page.search_fields + [
 index.SearchField('body'),
 index.FilterField('date'),
]

 # Editor panels configuration

 content_panels = Page.content_panels + [
 FieldPanel('date'),
 FieldPanel('body', classname="full"),
 InlinePanel('related_links', label="Related links"),
]

 promote_panels = [
 MultiFieldPanel(Page.promote_panels, "Common page configuration"),
 ImageChooserPanel('feed_image'),
]

 # Parent page / subpage type rules

 parent_page_types = ['blog.BlogIndex']
 subpage_types = []

class BlogPageRelatedLink(Orderable):
 page = ParentalKey(BlogPage, on_delete=models.CASCADE, related_name='related_links')
 name = models.CharField(max_length=255)
 url = models.URLField()

 panels = [
 FieldPanel('name'),
 FieldPanel('url'),
]

Important

Ensure that none of your field names are the same as your class names. This will cause errors due to the way Django handles relations (read more [https://github.com/wagtail/wagtail/issues/503]). In our examples we have avoided this by appending “Page” to each model name.

Writing page models

Here we’ll describe each section of the above example to help you create your own page models.

Database fields

Each Wagtail page type is a Django model, represented in the database as a separate table.

Each page type can have its own set of fields. For example, a news article may have body text and a published date, whereas an event page may need separate fields for venue and start/finish times.

In Wagtail, you can use any Django field class. Most field classes provided by third party apps should work as well.

Wagtail also provides a couple of field classes of its own:

	RichTextField - For rich text content

	StreamField - A block-based content field (see: Freeform page content using StreamField)

For tagging, Wagtail fully supports django-taggit [https://django-taggit.readthedocs.org/en/latest/] so we recommend using that.

Search

The search_fields attribute defines which fields are added to the search index and how they are indexed.

This should be a list of SearchField and FilterField objects. SearchField adds a field for full-text search. FilterField adds a field for filtering the results. A field can be indexed with both SearchField and FilterField at the same time (but only one instance of each).

In the above example, we’ve indexed body for full-text search and date for filtering.

The arguments that these field types accept are documented in Indexing extra fields.

Editor panels

There are a few attributes for defining how the page’s fields will be arranged in the page editor interface:

	content_panels - For content, such as main body text

	promote_panels - For metadata, such as tags, thumbnail image and SEO title

	settings_panels - For settings, such as publish date

Each of these attributes is set to a list of EditHandler objects, which defines which fields appear on which tabs and how they are structured on each tab.

Here’s a summary of the EditHandler classes that Wagtail provides out of the box. See Available panel types for full descriptions.

Basic

These allow editing of model fields. The FieldPanel class will choose the correct widget based on the type of the field, though StreamField fields need to use a specialised panel class.

	FieldPanel

	StreamFieldPanel

Structural

These are used for structuring fields in the interface.

	MultiFieldPanel - For grouping similar fields together

	InlinePanel - For inlining child models

	FieldRowPanel - For organising multiple fields into a single row

Chooser

ForeignKey fields to certain models can use one of the below ChooserPanel classes. These add a nice modal chooser interface, and the image/document choosers also allow uploading new files without leaving the page editor.

	PageChooserPanel

	ImageChooserPanel

	DocumentChooserPanel

	SnippetChooserPanel

Note

In order to use one of these choosers, the model being linked to must either be a page, image, document or snippet.

To link to any other model type, you should use FieldPanel, which will create a dropdown box.

Customising the page editor interface

The page editor can be customised further. See Customising the editing interface.

Parent page / subpage type rules

These two attributes allow you to control where page types may be used in your site. It allows you to define rules like “blog entries may only be created under a blog index”.

Both take a list of model classes or model names. Model names are of the format app_label.ModelName. If the app_label is omitted, the same app is assumed.

	parent_page_types limits which page types this type can be created under

	subpage_types limits which page types can be created under this type

By default, any page type can be created under any page type and it is not necessary to set these attributes if that’s the desired behaviour.

Setting parent_page_types to an empty list is a good way of preventing a particular page type from being created in the editor interface.

Page URLs

The most common method of retrieving page URLs is by using the {% pageurl %} template tag. Since it’s called from a template, pageurl automatically includes the optimizations mentioned below. For more information, see pageurl.

Page models also include several low-level methods for overriding or accessing page URLs.

Customising URL patterns for a page model

The Page.get_url_parts(request) method will not typically be called directly, but may be overridden to define custom URL routing for a given page model. It should return a tuple of (site_id, root_url, page_path), which are used by get_url and get_full_url (see below) to construct the given type of page URL.

When overriding get_url_parts(), you should accept *args, **kwargs:

def get_url_parts(self, *args, **kwargs):

and pass those through at the point where you are calling get_url_parts on super (if applicable), e.g.:

super().get_url_parts(*args, **kwargs)

While you could pass only the request keyword argument, passing all arguments as-is ensures compatibility with any
future changes to these method signatures.

For more information, please see wagtail.core.models.Page.get_url_parts().

Obtaining URLs for page instances

The Page.get_url(request) method can be called whenever a page URL is needed. It defaults to returning local URLs (not including the protocol or domain) if it can detect that the page is on the current site (via request.site); otherwise, a full URL including the protocol and domain is returned. Whenever possible, the optional request argument should be included to enable per-request caching of site-level URL information and facilitate the generation of local URLs.

A common use case for get_url(request) is in any custom template tag your project may include for generating navigation menus. When writing such a custom template tag, ensure that it includes takes_context=True and use context.get('request') to safely pass the
request or None if no request exists in the context.

For more information, please see wagtail.core.models.Page.get_url().

In the event a full URL (including the protocol and domain) is needed, Page.get_full_url(request) can be used instead. Whenever possible, the optional request argument should be included to enable per-request caching of site-level URL information. For more information, please see wagtail.core.models.Page.get_full_url().

Template rendering

Each page model can be given an HTML template which is rendered when a user browses to a page on the site frontend. This is the simplest and most common way to get Wagtail content to end users (but not the only way).

Adding a template for a page model

Wagtail automatically chooses a name for the template based on the app label and model class name.

Format: <app_label>/<model_name (snake cased)>.html

For example, the template for the above blog page will be: blog/blog_page.html

You just need to create a template in a location where it can be accessed with this name.

Template context

Wagtail renders templates with the page variable bound to the page instance being rendered. Use this to access the content of the page. For example, to get the title of the current page, use {{ page.title }}. All variables provided by context processors [https://docs.djangoproject.com/en/stable/ref/templates/api/#subclassing-context-requestcontext] are also available.

Customising template context

All pages have a get_context method that is called whenever the template is rendered and returns a dictionary of variables to bind into the template.

To add more variables to the template context, you can override this method:

class BlogIndexPage(Page):
 ...

 def get_context(self, request):
 context = super().get_context(request)

 # Add extra variables and return the updated context
 context['blog_entries'] = BlogPage.objects.child_of(self).live()
 return context

The variables can then be used in the template:

{{ page.title }}

{% for entry in blog_entries %}
 {{ entry.title }}
{% endfor %}

Changing the template

Set the template attribute on the class to use a different template file:

class BlogPage(Page):
 ...

 template = 'other_template.html'

Dynamically choosing the template

The template can be changed on a per-instance basis by defining a get_template method on the page class. This method is called every time the page is rendered:

class BlogPage(Page):
 ...

 use_other_template = models.BooleanField()

 def get_template(self, request):
 if self.use_other_template:
 return 'blog/other_blog_page.html'

 return 'blog/blog_page.html'

In this example, pages that have the use_other_template boolean field set will use the blog/other_blog_page.html template. All other pages will use the default blog/blog_page.html.

Ajax Templates

If you want to add AJAX functionality to a page, such as a paginated listing that updates in-place on the page rather than triggering a full page reload, you can set the ajax_template attribute to specify an alternative template to be used when the page is requested via an AJAX call (as indicated by the X-Requested-With: XMLHttpRequest HTTP header):

class BlogPage(Page):
 ...

 ajax_template = 'other_template_fragment.html'
 template = 'other_template.html'

More control over page rendering

All page classes have a serve() method that internally calls the get_context and get_template methods and renders the template. This method is similar to a Django view function, taking a Django Request object and returning a Django Response object.

This method can also be overridden for complete control over page rendering.

For example, here’s a way to make a page respond with a JSON representation of itself:

from django.http import JsonResponse

class BlogPage(Page):
 ...

 def serve(self, request):
 return JsonResponse({
 'title': self.title,
 'body': self.body,
 'date': self.date,

 # Resizes the image to 300px width and gets a URL to it
 'feed_image': self.feed_image.get_rendition('width-300').url,
 })

Inline models

Wagtail can nest the content of other models within the page. This is useful for creating repeated fields, such as related links or items to display in a carousel. Inline model content is also versioned with the rest of the page content.

Each inline model requires the following:

	It must inherit from wagtail.core.models.Orderable

	It must have a ParentalKey to the parent model

Note

django-modelcluster and ParentalKey

The model inlining feature is provided by django-modelcluster [https://github.com/torchbox/django-modelcluster] and the ParentalKey field type must be imported from there:

from modelcluster.fields import ParentalKey

ParentalKey is a subclass of Django’s ForeignKey, and takes the same arguments.

For example, the following inline model can be used to add related links (a list of name, url pairs) to the BlogPage model:

from django.db import models
from modelcluster.fields import ParentalKey
from wagtail.core.models import Orderable

class BlogPageRelatedLink(Orderable):
 page = ParentalKey(BlogPage, on_delete=models.CASCADE, related_name='related_links')
 name = models.CharField(max_length=255)
 url = models.URLField()

 panels = [
 FieldPanel('name'),
 FieldPanel('url'),
]

To add this to the admin interface, use the InlinePanel edit panel class:

content_panels = [
 ...

 InlinePanel('related_links', label="Related links"),
]

The first argument must match the value of the related_name attribute of the ParentalKey.

Working with pages

Wagtail uses Django’s multi-table inheritance [https://docs.djangoproject.com/en/stable/topics/db/models/#multi-table-inheritance] feature to allow multiple page models to be used in the same tree.

Each page is added to both Wagtail’s builtin Page model as well as its user-defined model (such as the BlogPage model created earlier).

Pages can exist in Python code in two forms, an instance of Page or an instance of the page model.

When working with multiple page types together, you will typically use instances of Wagtail’s Page model, which don’t give you access to any fields specific to their type.

Get all pages in the database
>>> from wagtail.core.models import Page
>>> Page.objects.all()
[<Page: Homepage>, <Page: About us>, <Page: Blog>, <Page: A Blog post>, <Page: Another Blog post>]

When working with a single page type, you can work with instances of the user-defined model. These give access to all the fields available in Page, along with any user-defined fields for that type.

Get all blog entries in the database
>>> BlogPage.objects.all()
[<BlogPage: A Blog post>, <BlogPage: Another Blog post>]

You can convert a Page object to its more specific user-defined equivalent using the .specific property. This may cause an additional database lookup.

>>> page = Page.objects.get(title="A Blog post")
>>> page
<Page: A Blog post>

Note: the blog post is an instance of Page so we cannot access body, date or feed_image

>>> page.specific
<BlogPage: A Blog post>

Tips

Friendly model names

You can make your model names more friendly to users of Wagtail by using Django’s internal Meta class with a verbose_name, e.g.:

class HomePage(Page):
 ...

 class Meta:
 verbose_name = "homepage"

When users are given a choice of pages to create, the list of page types is generated by splitting your model names on each of their capital letters. Thus a HomePage model would be named “Home Page” which is a little clumsy. Defining verbose_name as in the example above would change this to read “Homepage”, which is slightly more conventional.

Page QuerySet ordering

Page-derived models cannot be given a default ordering by using the standard Django approach of adding an ordering attribute to the internal Meta class.

class NewsItemPage(Page):
 publication_date = models.DateField()
 ...

 class Meta:
 ordering = ('-publication_date',) # will not work

This is because Page enforces ordering QuerySets by path. Instead, you must apply the ordering explicitly when constructing a QuerySet:

news_items = NewsItemPage.objects.live().order_by('-publication_date')

Custom Page managers

You can add a custom Manager to your Page class. Any custom Managers should inherit from wagtail.core.models.PageManager:

from django.db import models
from wagtail.core.models import Page, PageManager

class EventPageManager(PageManager):
 """ Custom manager for Event pages """

class EventPage(Page):
 start_date = models.DateField()

 objects = EventPageManager()

Alternately, if you only need to add extra QuerySet methods, you can inherit from wagtail.core.models.PageQuerySet, and call from_queryset() to build a custom Manager:

from django.db import models
from django.utils import timezone
from wagtail.core.models import Page, PageManager, PageQuerySet

class EventPageQuerySet(PageQuerySet):
 def future(self):
 today = timezone.localtime(timezone.now()).date()
 return self.filter(start_date__gte=today)

EventPageManager = PageManager.from_queryset(EventPageQuerySet)

class EventPage(Page):
 start_date = models.DateField()

 objects = EventPageManager()

Writing templates

Wagtail uses Django’s templating language. For developers new to Django, start with Django’s own template documentation:
Templates [https://docs.djangoproject.com/en/stable/topics/templates/]

Python programmers new to Django/Wagtail may prefer more technical documentation:
The Django template language: for Python programmers [https://docs.djangoproject.com/en/stable/ref/templates/api/]

You should be familiar with Django templating basics before continuing with this documentation.

Templates

Every type of page or “content type” in Wagtail is defined as a “model” in a file called models.py. If your site has a blog, you might have a BlogPage model and another called BlogPageListing. The names of the models are up to the Django developer.

For each page model in models.py, Wagtail assumes an HTML template file exists of (almost) the same name. The Front End developer may need to create these templates themselves by refering to models.py to infer template names from the models defined therein.

To find a suitable template, Wagtail converts CamelCase names to snake_case. So for a BlogPage, a template blog_page.html will be expected. The name of the template file can be overridden per model if necessary.

Template files are assumed to exist here:

name_of_project/
 name_of_app/
 templates/
 name_of_app/
 blog_page.html
 models.py

For more information, see the Django documentation for the application directories template loader [https://docs.djangoproject.com/en/stable/ref/templates/api/].

Page content

The data/content entered into each page is accessed/output through Django’s {{ double-brace }} notation. Each field from the model must be accessed by prefixing page.. e.g the page title {{ page.title }} or another field {{ page.author }}.

Additionally request. is available and contains Django’s request object.

Static assets

Static files e.g CSS, JS and images are typically stored here:

name_of_project/
 name_of_app/
 static/
 name_of_app/
 css/
 js/
 images/
 models.py

(The names “css”, “js” etc aren’t important, only their position within the tree.)

Any file within the static folder should be inserted into your HTML using the {% static %} tag. More about it: Static files (tag).

User images

Images uploaded to a Wagtail site by its users (as opposed to a developer’s static files, mentioned above) go into the image library and from there are added to pages via the page editor interface.

Unlike other CMSs, adding images to a page does not involve choosing a “version” of the image to use. Wagtail has no predefined image “formats” or “sizes”. Instead the template developer defines image manipulation to occur on the fly when the image is requested, via a special syntax within the template.

Images from the library must be requested using this syntax, but a developer’s static images can be added via conventional means e.g img tags. Only images from the library can be manipulated on the fly.

Read more about the image manipulation syntax here Using images in templates.

Template tags & filters

In addition to Django’s standard tags and filters, Wagtail provides some of its own, which can be load-ed just like any other [https://docs.djangoproject.com/en/stable/howto/custom-template-tags/].

Images (tag)

The image tag inserts an XHTML-compatible img element into the page, setting its src, width, height and alt. See also More control over the img tag.

The syntax for the image tag is thus:

{% image [image] [resize-rule] %}

For example:

{% load wagtailimages_tags %}
...

{% image page.photo width-400 %}

<!-- or a square thumbnail: -->
{% image page.photo fill-80x80 %}

See Using images in templates for full documentation.

Rich text (filter)

This filter takes a chunk of HTML content and renders it as safe HTML in the page. Importantly, it also expands internal shorthand references to embedded images, and links made in the Wagtail editor, into fully-baked HTML ready for display.

Only fields using RichTextField need this applied in the template.

{% load wagtailcore_tags %}
...
{{ page.body|richtext }}

Responsive Embeds

By default, Wagtail includes embeds and images at their full width, which may overflow the bounds of the content container you’ve defined in your templates. To address this, Wagtail provides the ability to make images and embeds responsive – meaning they’ll resize to fit their container. Responsive embeds can be enabled by setting WAGTAILEMBEDS_RESPONSIVE_HTML = True in your project settings; this adds a CSS class of responsive-object and an inline padding-bottom style to the embed, to be used in conjunction with CSS such as the following:

.rich-text img {
 max-width: 100%;
 height: auto;
}

.responsive-object {
 position: relative;
}

.responsive-object iframe,
.responsive-object object,
.responsive-object embed {
 position: absolute;
 top: 0;
 left: 0;
 width: 100%;
 height: 100%;
}

Changed in version 2.8: The WAGTAILEMBEDS_RESPONSIVE_HTML setting was added. Previous versions always added the class and style attributes.

Internal links (tag)

pageurl

Takes a Page object and returns a relative URL (/foo/bar/) if within the same Site as the current page, or absolute (http://example.com/foo/bar/) if not.

{% load wagtailcore_tags %}
...
Back to index

A fallback keyword argument can be provided - this should be a URL route name that takes no parameters, and will be used as a substitute URL when the passed page is None.

{% load wagtailcore_tags %}

{% for publication in page.related_publications.all %}

 {{ publication.title }}

{% endfor %}

slugurl

Takes any slug as defined in a page’s “Promote” tab and returns the URL for the matching Page. If multiple pages exist with the same slug, the page chosen is undetermined.

Like pageurl, this will try to provide a relative link if possible, but will default to an absolute link if the Page is on a different Site. This is most useful when creating shared page furniture, e.g. top level navigation or site-wide links.

{% load wagtailcore_tags %}
...
News index

Static files (tag)

Used to load anything from your static files directory. Use of this tag avoids rewriting all static paths if hosting arrangements change, as they might between development and live environments.

{% load static %}
...

Notice that the full path name is not required and the path snippet you enter only need begin with the parent app’s directory name.

Wagtail User Bar

This tag provides a contextual flyout menu for logged-in users. The menu gives editors the ability to edit the current page or add a child page, besides the options to show the page in the Wagtail page explorer or jump to the Wagtail admin dashboard. Moderators are also given the ability to accept or reject a page being previewed as part of content moderation.

{% load wagtailuserbar %}
...
{% wagtailuserbar %}

By default the User Bar appears in the bottom right of the browser window, inset from the edge. If this conflicts with your design it can be moved by passing a parameter to the template tag. These examples show you how to position the userbar in each corner of the screen:

...
{% wagtailuserbar 'top-left' %}
{% wagtailuserbar 'top-right' %}
{% wagtailuserbar 'bottom-left' %}
{% wagtailuserbar 'bottom-right' %}
...

The userbar can be positioned where it works best with your design. Alternatively, you can position it with a CSS rule in your own CSS files, for example:

.wagtail-userbar {
 top: 200px !important;
 left: 10px !important;
}

Varying output between preview and live

Sometimes you may wish to vary the template output depending on whether the page is being previewed or viewed live. For example, if you have visitor tracking code such as Google Analytics in place on your site, it’s a good idea to leave this out when previewing, so that editor activity doesn’t appear in your analytics reports. Wagtail provides a request.is_preview variable to distinguish between preview and live:

{% if not request.is_preview %}
 <script>
 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 ...
 </script>
{% endif %}

Using images in templates

The image tag inserts an XHTML-compatible img element into the page, setting its src, width, height and alt. See also More control over the img tag.

The syntax for the tag is thus:

{% image [image] [resize-rule] %}

Both the image and resize rule must be passed to the template tag.

For example:

{% load wagtailimages_tags %}
...

<!-- Display the image scaled to a width of 400 pixels: -->
{% image page.photo width-400 %}

<!-- Display it again, but this time as a square thumbnail: -->
{% image page.photo fill-80x80 %}

In the above syntax example [image] is the Django object referring to the image. If your page model defined a field called “photo” then [image] would probably be page.photo. The [resize-rule] defines how the image is to be resized when inserted into the page. Various resizing methods are supported, to cater to different use cases (e.g. lead images that span the whole width of the page, or thumbnails to be cropped to a fixed size).

Note that a space separates [image] and [resize-rule], but the resize rule must not contain spaces. The width is always specified before the height. Resized images will maintain their original aspect ratio unless the fill rule is used, which may result in some pixels being cropped.

The available resizing methods are as follows:

	max

	(takes two dimensions)

{% image page.photo max-1000x500 %}

Fit within the given dimensions.

The longest edge will be reduced to the matching dimension specified. For example, a portrait image of width 1000 and height 2000, treated with the max-1000x500 rule (a landscape layout) would result in the image being shrunk so the height was 500 pixels and the width was 250.

[image: Example of max filter on an image.]
Example: The image will keep its proportions but fit within the max (green line) dimensions provided.

	min

	(takes two dimensions)

{% image page.photo min-500x200 %}

Cover the given dimensions.

This may result in an image slightly larger than the dimensions you specify. A square image of width 2000 and height 2000, treated with the min-500x200 rule would have its height and width changed to 500, i.e matching the width of the resize-rule, but greater than the height.

[image: Example of min filter on an image.]
Example: The image will keep its proportions while filling at least the min (green line) dimensions provided.

	width

	(takes one dimension)

{% image page.photo width-640 %}

Reduces the width of the image to the dimension specified.

	height

	(takes one dimension)

{% image page.photo height-480 %}

Reduces the height of the image to the dimension specified.

	scale

	(takes percentage)

{% image page.photo scale-50 %}

Resize the image to the percentage specified.

	fill

	(takes two dimensions and an optional -c parameter)

{% image page.photo fill-200x200 %}

Resize and crop to fill the exact dimensions specified.

This can be particularly useful for websites requiring square thumbnails of arbitrary images. For example, a landscape image of width 2000 and height 1000 treated with the fill-200x200 rule would have its height reduced to 200, then its width (ordinarily 400) cropped to 200.

This resize-rule will crop to the image’s focal point if it has been set. If not, it will crop to the centre of the image.

[image: Example of fill filter on an image.]
Example: The image is scaled and also cropped (red line) to fit as much of the image as possible within the provided dimensions.

On images that won’t upscale

It’s possible to request an image with fill dimensions that the image can’t support without upscaling. e.g. an image of width 400 and height 200 requested with fill-400x400. In this situation the ratio of the requested fill will be matched, but the dimension will not. So that example 400x200 image (a 2:1 ratio) could become 200x200 (a 1:1 ratio, matching the resize-rule).

Cropping closer to the focal point

By default, Wagtail will only crop enough to change the aspect ratio of the image to match the ratio in the resize-rule.

In some cases (e.g. thumbnails), it may be preferable to crop closer to the focal point, so that the subject of the image is more prominent.

You can do this by appending -c<percentage> at the end of the resize-rule. For example, if you would like the image to be cropped as closely as possible to its focal point, add -c100:

{% image page.photo fill-200x200-c100 %}

This will crop the image as much as it can, without cropping into the focal point.

If you find that -c100 is too close, you can try -c75 or -c50. Any whole number from 0 to 100 is accepted.

[image: Example of fill filter on an image with a focal point set.]
Example: The focal point is set off centre so the image is scaled and also cropped like fill, however the center point of the crop is positioned closer the focal point.

[image: Example of fill and closeness filter on an image with a focal point set.]
Example: With -c75 set, the final crop will be closer to the focal point.

	original

	(takes no dimensions)

{% image page.photo original %}

Renders the image at its original size.

Note

Wagtail does not allow deforming or stretching images. Image dimension ratios will always be kept. Wagtail also does not support upscaling. Small images forced to appear at larger sizes will “max out” at their native dimensions.

More control over the img tag

Wagtail provides two shortcuts to give greater control over the img element:

1. Adding attributes to the {% image %} tag

Extra attributes can be specified with the syntax attribute="value":

{% image page.photo width-400 class="foo" id="bar" %}

You can set a more relevant alt attribute this way, overriding the one automatically generated from the title of the image. The src, width, and height attributes can also be overridden, if necessary.

2. Generating the image “as foo” to access individual properties

Wagtail can assign the image data to another variable using Django’s as syntax:

{% image page.photo width-400 as tmp_photo %}

<img src="{{ tmp_photo.url }}" width="{{ tmp_photo.width }}"
 height="{{ tmp_photo.height }}" alt="{{ tmp_photo.alt }}" class="my-custom-class" />

This syntax exposes the underlying image Rendition (tmp_photo) to the developer. A “Rendition” contains the information specific to the way you’ve requested to format the image using the resize-rule, i.e. dimensions and source URL.

If your site defines a custom image model using AbstractImage, any additional fields you add to an image (e.g. a copyright holder) are not included in the rendition.

Therefore, if you’d added the field author to your AbstractImage in the above example, you’d access it using {{ page.photo.author }} rather than {{ tmp_photo.author }}.

(Due to the links in the database between renditions and their parent image, you could access it as {{ tmp_photo.image.author }}, but that has reduced readability.)

Note

The image property used for the src attribute is actually image.url, not image.src.

The attrs shortcut

You can also use the attrs property as a shorthand to output the attributes src, width, height and alt in one go:

Alternative HTML tags

The as keyword allows alternative HTML image tags (such as <picture> or <amp-img>) to be used.
For example, to use the <picture> tag:

<picture>
 {% image page.photo width-800 as wide_photo %}
 <source srcset="{{ wide_photo.url }}" media="(min-width: 800px)">
 {% image page.photo width-400 %}
</picture>

And to use the <amp-img> tag (based on the Mountains example [https://amp.dev/documentation/components/amp-img/#example:-specifying-a-fallback-image] from the AMP docs):

{% image image width-550 format-webp as webp_image %}
{% image image width-550 format-jpeg as jpeg_image %}

<amp-img alt="{{ image.alt }}"
 width="{{ webp_image.width }}"
 height="{{ webp_image.height }}"
 src="{{ webp_image.url }}">
 <amp-img alt="{{ image.alt }}"
 fallback
 width="{{ jpeg_image.width }}"
 height="{{ jpeg_image.height }}"
 src="{{ jpeg_image.url }}"></amp-img>
</amp-img>

Images embedded in rich text

The information above relates to images defined via image-specific fields in your model. However, images can also be embedded arbitrarily in Rich Text fields by the page editor (see Rich Text (HTML)).

Images embedded in Rich Text fields can’t be controlled by the template developer as easily. There are no image objects to work with, so the {% image %} template tag can’t be used. Instead, editors can choose from one of a number of image “Formats” at the point of inserting images into their text.

Wagtail comes with three pre-defined image formats, but more can be defined in Python by the developer. These formats are:

	Full width

	Creates an image rendition using width-800, giving the tag the CSS class full-width.

	Left-aligned

	Creates an image rendition using width-500, giving the tag the CSS class left.

	Right-aligned

	Creates an image rendition using width-500, giving the tag the CSS class right.

Note

The CSS classes added to images do not come with any accompanying stylesheets, or inline styles. e.g. the left class will do nothing, by default. The developer is expected to add these classes to their front end CSS files, to define exactly what they want left, right or full-width to mean.

For more information about image formats, including creating your own, see Image Formats in the Rich Text Editor

Output image format

Wagtail may automatically change the format of some images when they are resized:

	PNG and JPEG images don’t change format

	GIF images without animation are converted to PNGs

	BMP images are converted to PNGs

It is also possible to override the output format on a per-tag basis by using the
format filter after the resize rule.

For example, to make the tag always convert the image to a JPEG, use format-jpeg:

{% image page.photo width-400 format-jpeg %}

You may also use format-png or format-gif.

Background color

The PNG and GIF image formats both support transparency, but if you want to
convert images to JPEG format, the transparency will need to be replaced with a
solid background color.

By default, Wagtail will set the background to white. But if a white background
doesn’t fit your design, you can specify a color using the bgcolor filter.

This filter takes a single argument, which is a CSS 3 or 6 digit hex code
representing the color you would like to use:

{# Sets the image background to black #}
{% image page.photo width-400 bgcolor-000 format-jpeg %}

JPEG image quality

Wagtail’s JPEG image quality setting defaults to 85 (which is quite high). This
can be changed either globally or on a per-tag basis.

Changing globally

Use the WAGTAILIMAGES_JPEG_QUALITY setting to change the global default JPEG
quality:

settings.py

Make low-quality but small images
WAGTAILIMAGES_JPEG_QUALITY = 40

Note that this won’t affect any previously generated images so you may want to
delete all renditions so they can regenerate with the new setting. This can be
done from the Django shell:

Replace this with your custom rendition model if you use one
>>> from wagtail.images.models import Rendition
>>> Rendition.objects.all().delete()

Changing per-tag

It’s also possible to have different JPEG qualities on individual tags by using
the jpegquality filter. This will always override the default setting:

{% image page.photo width-400 jpegquality-40 %}

Note that this will have no effect on PNG or GIF files. If you want all images
to be low quality, you can use this filter with format-jpeg (which forces
all images to output in JPEG format):

{% image page.photo width-400 format-jpeg jpegquality-40 %}

Generating image renditions in Python

All of the image transformations mentioned above can also be used directly in Python code.
See Generating renditions in Python.

Search

Wagtail provides a comprehensive and extensible search interface. In addition, it provides ways to promote search results through “Editor’s Picks”. Wagtail also collects simple statistics on queries made through the search interface.

	Indexing
	Updating the index

	Indexing extra fields

	Indexing custom models

	Searching
	Searching QuerySets

	An example page search view

	Promoted search results

	Backends
	AUTO_UPDATE

	ATOMIC_REBUILD

	BACKEND

Indexing

To make objects searchable, they must first be added to the search index. This involves configuring the models and fields that you would like to index (which is done for you for Pages, Images and Documents), and then actually inserting them into the index.

See Updating the index for information on how to keep the objects in your search index in sync with the objects in your database.

If you have created some extra fields in a subclass of Page or Image, you may want to add these new fields to the search index, so a user’s search query can match the Page or Image’s extra content. See Indexing extra fields.

If you have a custom model which doesn’t derive from Page or Image that you would like to make searchable, see Indexing custom models.

Searching

Wagtail provides an API for performing search queries on your models. You can also perform search queries on Django QuerySets.

See Searching.

Backends

Wagtail provides three backends for storing the search index and performing search queries: Elasticsearch, the database, and PostgreSQL (Django >=1.10 required). It’s also possible to roll your own search backend.

See Backends

Indexing

To make a model searchable, you’ll need to add it into the search index. All pages, images and documents are indexed for you, so you can start searching them right away.

If you have created some extra fields in a subclass of Page or Image, you may want to add these new fields to the search index too so that a user’s search query will match on their content. See Indexing extra fields for info on how to do this.

If you have a custom model that you would like to make searchable, see Indexing custom models.

Updating the index

If the search index is kept separate from the database (when using Elasticsearch for example), you need to keep them both in sync. There are two ways to do this: using the search signal handlers, or calling the update_index command periodically. For best speed and reliability, it’s best to use both if possible.

Signal handlers

wagtailsearch provides some signal handlers which bind to the save/delete signals of all indexed models. This would automatically add and delete them from all backends you have registered in WAGTAILSEARCH_BACKENDS. These signal handlers are automatically registered when the wagtail.search app is loaded.

In some cases, you may not want your content to be automatically reindexed and instead rely on the update_index command for indexing. If you need to disable these signal handlers, use one of the following methods:

Disabling auto update signal handlers for a model

You can disable the signal handlers for an individual model by adding search_auto_update = False as an attribute on the model class.

Disabling auto update signal handlers for a search backend/whole site

You can disable the signal handlers for a whole search backend by setting the AUTO_UPDATE setting on the backend to False.

If all search backends have AUTO_UPDATE set to False, the signal handlers will be completely disabled for the whole site.

For documentation on the AUTO_UPDATE setting, see AUTO_UPDATE.

The update_index command

Wagtail also provides a command for rebuilding the index from scratch.

./manage.py update_index

It is recommended to run this command once a week and at the following times:

	whenever any pages have been created through a script (after an import, for example)

	whenever any changes have been made to models or search configuration

The search may not return any results while this command is running, so avoid running it at peak times.

Note

The update_index command is also aliased as wagtail_update_index, for use when another installed package (such as Haystack [https://haystacksearch.org/]) provides a conflicting update_index command. In this case, the other package’s entry in INSTALLED_APPS should appear above wagtail.search so that its update_index command takes precedence over Wagtail’s.

Indexing extra fields

Warning

Indexing extra fields is only supported by the Elasticsearch Backend and PostgreSQL Backend. Indexing extra fields is not supported by the Database Backend (default). If you’re using the database backend, any other fields you define via search_fields will be ignored.

Fields must be explicitly added to the search_fields property of your Page-derived model, in order for you to be able to search/filter on them. This is done by overriding search_fields to append a list of extra SearchField/FilterField objects to it.

Example

This creates an EventPage model with two fields: description and date. description is indexed as a SearchField and date is indexed as a FilterField

from wagtail.search import index
from django.utils import timezone

class EventPage(Page):
 description = models.TextField()
 date = models.DateField()

 search_fields = Page.search_fields + [# Inherit search_fields from Page
 index.SearchField('description'),
 index.FilterField('date'),
]

Get future events which contain the string "Christmas" in the title or description
>>> EventPage.objects.filter(date__gt=timezone.now()).search("Christmas")

index.SearchField

These are used for performing full-text searches on your models, usually for text fields.

Options

	partial_match (boolean) - Setting this to true allows results to be matched on parts of words. For example, this is set on the title field by default, so a page titled Hello World! will be found if the user only types Hel into the search box.

	boost (int/float) - This allows you to set fields as being more important than others. Setting this to a high number on a field will cause pages with matches in that field to be ranked higher. By default, this is set to 2 on the Page title field and 1 on all other fields.

	es_extra (dict) - This field is to allow the developer to set or override any setting on the field in the ElasticSearch mapping. Use this if you want to make use of any ElasticSearch features that are not yet supported in Wagtail.

index.FilterField

These are added to the search index but are not used for full-text searches. Instead, they allow you to run filters on your search results.

index.RelatedFields

This allows you to index fields from related objects. It works on all types of related fields, including their reverse accessors.

For example, if we have a book that has a ForeignKey to its author, we can nest the author’s name and date_of_birth fields inside the book:

from wagtail.search import index

class Book(models.Model, index.Indexed):
 ...

 search_fields = [
 index.SearchField('title'),
 index.FilterField('published_date'),

 index.RelatedFields('author', [
 index.SearchField('name'),
 index.FilterField('date_of_birth'),
]),
]

This will allow you to search for books by their author’s name.

It works the other way around as well. You can index an author’s books, allowing an author to be searched for by the titles of books they’ve published:

from wagtail.search import index

class Author(models.Model, index.Indexed):
 ...

 search_fields = [
 index.SearchField('name'),
 index.FilterField('date_of_birth'),

 index.RelatedFields('books', [
 index.SearchField('title'),
 index.FilterField('published_date'),
]),
]

Filtering on index.RelatedFields

It’s not possible to filter on any index.FilterFields within index.RelatedFields using the QuerySet API. However, the fields are indexed, so it should be possible to use them by querying Elasticsearch manually.

Filtering on index.RelatedFields with the QuerySet API is planned for a future release of Wagtail.

Indexing callables and other attributes

Note

This is not supported in the Database Backend (default)

Search/filter fields do not need to be Django model fields. They can also be any method or attribute on your model class.

One use for this is indexing the get_*_display methods Django creates automatically for fields with choices.

from wagtail.search import index

class EventPage(Page):
 IS_PRIVATE_CHOICES = (
 (False, "Public"),
 (True, "Private"),
)

 is_private = models.BooleanField(choices=IS_PRIVATE_CHOICES)

 search_fields = Page.search_fields + [
 # Index the human-readable string for searching.
 index.SearchField('get_is_private_display'),

 # Index the boolean value for filtering.
 index.FilterField('is_private'),
]

Callables also provide a way to index fields from related models. In the example from Inline Panels and Model Clusters, to index each BookPage by the titles of its related_links:

class BookPage(Page):
 # ...
 def get_related_link_titles(self):
 # Get list of titles and concatenate them
 return '\n'.join(self.related_links.all().values_list('name', flat=True))

 search_fields = Page.search_fields + [
 # ...
 index.SearchField('get_related_link_titles'),
]

Indexing custom models

Any Django model can be indexed and searched.

To do this, inherit from index.Indexed and add some search_fields to the model.

from wagtail.search import index

class Book(index.Indexed, models.Model):
 title = models.CharField(max_length=255)
 genre = models.CharField(max_length=255, choices=GENRE_CHOICES)
 author = models.ForeignKey(Author, on_delete=models.CASCADE)
 published_date = models.DateTimeField()

 search_fields = [
 index.SearchField('title', partial_match=True, boost=10),
 index.SearchField('get_genre_display'),

 index.FilterField('genre'),
 index.FilterField('author'),
 index.FilterField('published_date'),
]

As this model doesn't have a search method in its QuerySet, we have to call search directly on the backend
>>> from wagtail.search.backends import get_search_backend
>>> s = get_search_backend()

Run a search for a book by Roald Dahl
>>> roald_dahl = Author.objects.get(name="Roald Dahl")
>>> s.search("chocolate factory", Book.objects.filter(author=roald_dahl))
[<Book: Charlie and the chocolate factory>]

Searching

Searching QuerySets

Wagtail search is built on Django’s QuerySet API [https://docs.djangoproject.com/en/stable/ref/models/querysets/]. You should be able to search any Django QuerySet provided the model and the fields being filtered on have been added to the search index.

Searching Pages

Wagtail provides a shortcut for searching pages: the .search() QuerySet method. You can call this on any PageQuerySet. For example:

Search future EventPages
>>> from wagtail.core.models import EventPage
>>> EventPage.objects.filter(date__gt=timezone.now()).search("Hello world!")

All other methods of PageQuerySet can be used with search(). For example:

Search all live EventPages that are under the events index
>>> EventPage.objects.live().descendant_of(events_index).search("Event")
[<EventPage: Event 1>, <EventPage: Event 2>]

Note

The search() method will convert your QuerySet into an instance of one of Wagtail’s SearchResults classes (depending on backend). This means that you must perform filtering before calling search().

Searching Images, Documents and custom models

Wagtail’s document and image models provide a search method on their QuerySets, just as pages do:

>>> from wagtail.images.models import Image

>>> Image.objects.filter(uploaded_by_user=user).search("Hello")
[<Image: Hello>, <Image: Hello world!>]

Custom models can be searched by using the search method on the search backend directly:

>>> from myapp.models import Book
>>> from wagtail.search.backends import get_search_backend

Search books
>>> s = get_search_backend()
>>> s.search("Great", Book)
[<Book: Great Expectations>, <Book: The Great Gatsby>]

You can also pass a QuerySet into the search method which allows you to add filters to your search results:

>>> from myapp.models import Book
>>> from wagtail.search.backends import get_search_backend

Search books
>>> s = get_search_backend()
>>> s.search("Great", Book.objects.filter(published_date__year__lt=1900))
[<Book: Great Expectations>]

Specifying the fields to search

By default, Wagtail will search all fields that have been indexed using index.SearchField.

This can be limited to a certain set of fields by using the fields keyword argument:

Search just the title field
>>> EventPage.objects.search("Event", fields=["title"])
[<EventPage: Event 1>, <EventPage: Event 2>]

Faceted search

Wagtail supports faceted search which is a kind of filtering based on a taxonomy
field (such as category or page type).

The .facet(field_name) method returns an OrderedDict. The keys are
the IDs of the related objects that have been referenced by the specified field, and the
values are the number of references found for each ID. The results are ordered by number
of references descending.

For example, to find the most common page types in the search results:

>>> Page.objects.search("Test").facet("content_type_id")

Note: The keys correspond to the ID of a ContentType object; the values are the
number of pages returned for that type
OrderedDict([
 ('2', 4), # 4 pages have content_type_id == 2
 ('1', 2), # 2 pages have content_type_id == 1
])

Changing search behaviour

Search operator

The search operator specifies how search should behave when the user has typed in multiple search terms. There are two possible values:

	“or” - The results must match at least one term (default for Elasticsearch)

	“and” - The results must match all terms (default for database search)

Both operators have benefits and drawbacks. The “or” operator will return many more results but will likely contain a lot of results that aren’t relevant. The “and” operator only returns results that contain all search terms, but require the user to be more precise with their query.

We recommend using the “or” operator when ordering by relevance and the “and” operator when ordering by anything else (note: the database backend doesn’t currently support ordering by relevance).

Here’s an example of using the operator keyword argument:

The database contains a "Thing" model with the following items:
- Hello world
- Hello
- World

Search with the "or" operator
>>> s = get_search_backend()
>>> s.search("Hello world", Things, operator="or")

All records returned as they all contain either "hello" or "world"
[<Thing: Hello World>, <Thing: Hello>, <Thing: World>]

Search with the "and" operator
>>> s = get_search_backend()
>>> s.search("Hello world", Things, operator="and")

Only "hello world" returned as that's the only item that contains both terms
[<Thing: Hello world>]

For page, image and document models, the operator keyword argument is also supported on the QuerySet’s search method:

>>> Page.objects.search("Hello world", operator="or")

All pages containing either "hello" or "world" are returned
[<Page: Hello World>, <Page: Hello>, <Page: World>]

Custom ordering

By default, search results are ordered by relevance, if the backend supports it. To preserve the QuerySet’s existing ordering, the order_by_relevance keyword argument needs to be set to False on the search() method.

For example:

Get a list of events ordered by date
>>> EventPage.objects.order_by('date').search("Event", order_by_relevance=False)

Events ordered by date
[<EventPage: Easter>, <EventPage: Halloween>, <EventPage: Christmas>]

Annotating results with score

For each matched result, Elasticsearch calculates a “score”, which is a number
that represents how relevant the result is based on the user’s query. The
results are usually ordered based on the score.

There are some cases where having access to the score is useful (such as
programmatically combining two queries for different models). You can add the
score to each result by calling the .annotate_score(field) method on the
SearchQuerySet.

For example:

>>> events = EventPage.objects.search("Event").annotate_score("_score")
>>> for event in events:
... print(event.title, event._score)
...
("Easter", 2.5),
("Haloween", 1.7),
("Christmas", 1.5),

Note that the score itself is arbitrary and it is only useful for comparison
of results for the same query.

An example page search view

Here’s an example Django view that could be used to add a “search” page to your site:

views.py

from django.shortcuts import render

from wagtail.core.models import Page
from wagtail.search.models import Query

def search(request):
 # Search
 search_query = request.GET.get('query', None)
 if search_query:
 search_results = Page.objects.live().search(search_query)

 # Log the query so Wagtail can suggest promoted results
 Query.get(search_query).add_hit()
 else:
 search_results = Page.objects.none()

 # Render template
 return render(request, 'search_results.html', {
 'search_query': search_query,
 'search_results': search_results,
 })

And here’s a template to go with it:

{% extends "base.html" %}
{% load wagtailcore_tags %}

{% block title %}Search{% endblock %}

{% block content %}
 <form action="{% url 'search' %}" method="get">
 <input type="text" name="query" value="{{ search_query }}">
 <input type="submit" value="Search">
 </form>

 {% if search_results %}

 {% for result in search_results %}

 <h4>{{ result }}</h4>
 {% if result.search_description %}
 {{ result.search_description|safe }}
 {% endif %}

 {% endfor %}

 {% elif search_query %}
 No results found
 {% else %}
 Please type something into the search box
 {% endif %}
{% endblock %}

Promoted search results

“Promoted search results” allow editors to explicitly link relevant content to search terms, so results pages can contain curated content in addition to results from the search engine.

This functionality is provided by the search_promotions contrib module.

Backends

Wagtailsearch has support for multiple backends, giving you the choice between using the database for search or an external service such as Elasticsearch. The database backend is enabled by default.

You can configure which backend to use with the WAGTAILSEARCH_BACKENDS setting:

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': 'wagtail.search.backends.db',
 }
}

AUTO_UPDATE

By default, Wagtail will automatically keep all indexes up to date. This could impact performance when editing content, especially if your index is hosted on an external service.

The AUTO_UPDATE setting allows you to disable this on a per-index basis:

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': ...,
 'AUTO_UPDATE': False,
 }
}

If you have disabled auto update, you must run the update_index command on a regular basis to keep the index in sync with the database.

ATOMIC_REBUILD

Warning

This option may not work on Elasticsearch version 5.4 and above, due to a bug in the handling of aliases [https://github.com/elastic/elasticsearch/issues/24644] affecting these releases.

By default (when using the Elasticsearch backend), when the update_index command is run, Wagtail deletes the index and rebuilds it from scratch. This causes the search engine to not return results until the rebuild is complete and is also risky as you can’t rollback if an error occurs.

Setting the ATOMIC_REBUILD setting to True makes Wagtail rebuild into a separate index while keep the old index active until the new one is fully built. When the rebuild is finished, the indexes are swapped atomically and the old index is deleted.

BACKEND

Here’s a list of backends that Wagtail supports out of the box.

Database Backend (default)

wagtail.search.backends.db

The database backend is very basic and is intended only to be used in development and on small sites. It cannot order results by relevance, severely hampering its usefulness when searching a large collection of pages.

It also doesn’t support:

	Searching on fields in subclasses of Page (unless the class is being searched directly)

	Indexing callables and other attributes

	Converting accented characters to ASCII

If any of these features are important to you, we recommend using Elasticsearch instead.

PostgreSQL Backend

wagtail.contrib.postgres_search.backend

If you use PostgreSQL for your database and your site has less than
a million pages, you probably want to use this backend.

See PostgreSQL search engine for more detail.

Elasticsearch Backend

Elasticsearch versions 2, 5, 6 and 7 are supported. Use the appropriate backend for your version:

wagtail.search.backends.elasticsearch2 (Elasticsearch 2.x)

wagtail.search.backends.elasticsearch5 (Elasticsearch 5.x)

wagtail.search.backends.elasticsearch6 (Elasticsearch 6.x)

wagtail.search.backends.elasticsearch7 (Elasticsearch 7.x)

Prerequisites are the Elasticsearch [https://www.elastic.co/downloads/elasticsearch] service itself and, via pip, the elasticsearch-py [https://elasticsearch-py.readthedocs.org] package. The major version of the package must match the installed version of Elasticsearch:

$ pip install "elasticsearch>=2.0.0,<3.0.0" # for Elasticsearch 2.x

pip install "elasticsearch>=5.0.0,<6.0.0" # for Elasticsearch 5.x

pip install "elasticsearch>=6.4.0,<7.0.0" # for Elasticsearch 6.x

pip install "elasticsearch>=7.0.0,<8.0.0" # for Elasticsearch 7.x

Warning

Version 6.3.1 of the Elasticsearch client library is incompatible with Wagtail. Use 6.4.0 or above.

The backend is configured in settings:

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': 'wagtail.search.backends.elasticsearch2',
 'URLS': ['http://localhost:9200'],
 'INDEX': 'wagtail',
 'TIMEOUT': 5,
 'OPTIONS': {},
 'INDEX_SETTINGS': {},
 }
}

Other than BACKEND, the keys are optional and default to the values shown. Any defined key in OPTIONS is passed directly to the Elasticsearch constructor as case-sensitive keyword argument (e.g. 'max_retries': 1).

INDEX_SETTINGS is a dictionary used to override the default settings to create the index. The default settings are defined inside the ElasticsearchSearchBackend class in the module wagtail/wagtail/wagtailsearch/backends/elasticsearch.py. Any new key is added, any existing key, if not a dictionary, is replaced with the new value. Here’s a sample on how to configure the number of shards and setting the Italian LanguageAnalyzer as the default analyzer:

WAGTAILSEARCH_BACKENDS = {
 'default': {
 ...,
 'INDEX_SETTINGS': {
 'settings': {
 'index': {
 'number_of_shards': 1,
 },
 'analysis': {
 'analyzer': {
 'default': {
 'type': 'italian'
 }
 }
 }
 }
 }
 }

If you prefer not to run an Elasticsearch server in development or production, there are many hosted services available, including Bonsai [https://bonsai.io/signup], who offer a free account suitable for testing and development. To use Bonsai:

	Sign up for an account at Bonsai [https://bonsai.io/signup]

	Use your Bonsai dashboard to create a Cluster.

	Configure URLS in the Elasticsearch entry in WAGTAILSEARCH_BACKENDS using the Cluster URL from your Bonsai dashboard

	Run ./manage.py update_index

Amazon AWS Elasticsearch

The Elasticsearch backend is compatible with Amazon Elasticsearch Service [https://aws.amazon.com/elasticsearch-service/], but requires additional configuration to handle IAM based authentication. This can be done with the requests-aws4auth [https://pypi.python.org/pypi/requests-aws4auth] package along with the following configuration:

from elasticsearch import RequestsHttpConnection
from requests_aws4auth import AWS4Auth

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': 'wagtail.search.backends.elasticsearch2',
 'INDEX': 'wagtail',
 'TIMEOUT': 5,
 'HOSTS': [{
 'host': 'YOURCLUSTER.REGION.es.amazonaws.com',
 'port': 443,
 'use_ssl': True,
 'verify_certs': True,
 'http_auth': AWS4Auth('ACCESS_KEY', 'SECRET_KEY', 'REGION', 'es'),
 }],
 'OPTIONS': {
 'connection_class': RequestsHttpConnection,
 },
 }
}

Rolling Your Own

Wagtail search backends implement the interface defined in wagtail/wagtail/wagtailsearch/backends/base.py. At a minimum, the backend’s search() method must return a collection of objects or model.objects.none(). For a fully-featured search backend, examine the Elasticsearch backend code in elasticsearch.py.

Snippets

Snippets are pieces of content which do not necessitate a full webpage to render. They could be used for making secondary content, such as headers, footers, and sidebars, editable in the Wagtail admin. Snippets are Django models which do not inherit the Page class and are thus not organized into the Wagtail tree. However, they can still be made editable by assigning panels and identifying the model as a snippet with the register_snippet class decorator.

Snippets lack many of the features of pages, such as being orderable in the Wagtail admin or having a defined URL. Decide carefully if the content type you would want to build into a snippet might be more suited to a page.

Snippet Models

Here’s an example snippet model:

from django.db import models

from wagtail.admin.edit_handlers import FieldPanel
from wagtail.snippets.models import register_snippet

...

@register_snippet
class Advert(models.Model):
 url = models.URLField(null=True, blank=True)
 text = models.CharField(max_length=255)

 panels = [
 FieldPanel('url'),
 FieldPanel('text'),
]

 def __str__(self):
 return self.text

The Advert model uses the basic Django model class and defines two properties: text and URL. The editing interface is very close to that provided for Page-derived models, with fields assigned in the panels property. Snippets do not use multiple tabs of fields, nor do they provide the “save as draft” or “submit for moderation” features.

@register_snippet tells Wagtail to treat the model as a snippet. The panels list defines the fields to show on the snippet editing page. It’s also important to provide a string representation of the class through def __str__(self): so that the snippet objects make sense when listed in the Wagtail admin.

Including Snippets in Template Tags

The simplest way to make your snippets available to templates is with a template tag. This is mostly done with vanilla Django, so perhaps reviewing Django’s documentation for django custom template tags [https://docs.djangoproject.com/en/stable/howto/custom-template-tags/] will be more helpful. We’ll go over the basics, though, and point out any considerations to make for Wagtail.

First, add a new python file to a templatetags folder within your app - for example, myproject/demo/templatetags/demo_tags.py. We’ll need to load some Django modules and our app’s models, and ready the register decorator:

from django import template
from demo.models import Advert

register = template.Library()

...

Advert snippets
@register.inclusion_tag('demo/tags/adverts.html', takes_context=True)
def adverts(context):
 return {
 'adverts': Advert.objects.all(),
 'request': context['request'],
 }

@register.inclusion_tag() takes two variables: a template and a boolean on whether that template should be passed a request context. It’s a good idea to include request contexts in your custom template tags, since some Wagtail-specific template tags like pageurl need the context to work properly. The template tag function could take arguments and filter the adverts to return a specific instance of the model, but for brevity we’ll just use Advert.objects.all().

Here’s what’s in the template used by this template tag:

{% for advert in adverts %}
 <p>

 {{ advert.text }}

 </p>
{% endfor %}

Then, in your own page templates, you can include your snippet template tag with:

{% load wagtailcore_tags demo_tags %}

...

{% block content %}

 ...

 {% adverts %}

{% endblock %}

Binding Pages to Snippets

In the above example, the list of adverts is a fixed list that is displayed via the custom template tag independent of any other content on the page. This might be what you want for a common panel in a sidebar, but, in another scenario, you might wish to display just one specific instance of a snippet on a particular page. This can be accomplished by defining a foreign key to the snippet model within your page model and adding a SnippetChooserPanel to the page’s content_panels list. For example, if you wanted to display a specific advert on a BookPage instance:

from wagtail.snippets.edit_handlers import SnippetChooserPanel
...
class BookPage(Page):
 advert = models.ForeignKey(
 'demo.Advert',
 null=True,
 blank=True,
 on_delete=models.SET_NULL,
 related_name='+'
)

 content_panels = Page.content_panels + [
 SnippetChooserPanel('advert'),
 # ...
]

The snippet could then be accessed within your template as page.advert.

To attach multiple adverts to a page, the SnippetChooserPanel can be placed on an inline child object of BookPage rather than on BookPage itself. Here, this child model is named BookPageAdvertPlacement (so called because there is one such object for each time that an advert is placed on a BookPage):

from django.db import models

from wagtail.core.models import Page, Orderable
from wagtail.snippets.edit_handlers import SnippetChooserPanel

from modelcluster.fields import ParentalKey

...

class BookPageAdvertPlacement(Orderable, models.Model):
 page = ParentalKey('demo.BookPage', on_delete=models.CASCADE, related_name='advert_placements')
 advert = models.ForeignKey('demo.Advert', on_delete=models.CASCADE, related_name='+')

 class Meta:
 verbose_name = "advert placement"
 verbose_name_plural = "advert placements"

 panels = [
 SnippetChooserPanel('advert'),
]

 def __str__(self):
 return self.page.title + " -> " + self.advert.text

class BookPage(Page):
 ...

 content_panels = Page.content_panels + [
 InlinePanel('advert_placements', label="Adverts"),
 # ...
]

These child objects are now accessible through the page’s advert_placements property, and from there we can access the linked Advert snippet as advert. In the template for BookPage, we could include the following:

{% for advert_placement in page.advert_placements.all %}
 <p>

 {{ advert_placement.advert.text }}

 </p>
{% endfor %}

Making Snippets Searchable

If a snippet model inherits from wagtail.search.index.Indexed, as described in Indexing custom models, Wagtail will automatically add a search box to the chooser interface for that snippet type. For example, the Advert snippet could be made searchable as follows:

...

from wagtail.search import index

...

@register_snippet
class Advert(index.Indexed, models.Model):
 url = models.URLField(null=True, blank=True)
 text = models.CharField(max_length=255)

 panels = [
 FieldPanel('url'),
 FieldPanel('text'),
]

 search_fields = [
 index.SearchField('text', partial_match=True),
]

Tagging snippets

Adding tags to snippets is very similar to adding tags to pages. The only difference is that taggit.manager.TaggableManager should be used in the place of ClusterTaggableManager.

from modelcluster.fields import ParentalKey
from modelcluster.models import ClusterableModel
from taggit.models import TaggedItemBase
from taggit.managers import TaggableManager

class AdvertTag(TaggedItemBase):
 content_object = ParentalKey('demo.Advert', on_delete=models.CASCADE, related_name='tagged_items')

@register_snippet
class Advert(ClusterableModel):
 ...
 tags = TaggableManager(through=AdvertTag, blank=True)

 panels = [
 ...
 FieldPanel('tags'),
]

The documentation on tagging pages has more information on how to use tags in views.

Freeform page content using StreamField

StreamField provides a content editing model suitable for pages that do not follow a fixed structure – such as blog posts or news stories – where the text may be interspersed with subheadings, images, pull quotes and video. It’s also suitable for more specialised content types, such as maps and charts (or, for a programming blog, code snippets). In this model, these different content types are represented as a sequence of ‘blocks’, which can be repeated and arranged in any order.

For further background on StreamField, and why you would use it instead of a rich text field for the article body, see the blog post Rich text fields and faster horses [https://torchbox.com/blog/rich-text-fields-and-faster-horses/].

StreamField also offers a rich API to define your own block types, ranging from simple collections of sub-blocks (such as a ‘person’ block consisting of first name, surname and photograph) to completely custom components with their own editing interface. Within the database, the StreamField content is stored as JSON, ensuring that the full informational content of the field is preserved, rather than just an HTML representation of it.

Using StreamField

StreamField is a model field that can be defined within your page model like any other field:

from django.db import models

from wagtail.core.models import Page
from wagtail.core.fields import StreamField
from wagtail.core import blocks
from wagtail.admin.edit_handlers import FieldPanel, StreamFieldPanel
from wagtail.images.blocks import ImageChooserBlock

class BlogPage(Page):
 author = models.CharField(max_length=255)
 date = models.DateField("Post date")
 body = StreamField([
 ('heading', blocks.CharBlock(classname="full title")),
 ('paragraph', blocks.RichTextBlock()),
 ('image', ImageChooserBlock()),
])

 content_panels = Page.content_panels + [
 FieldPanel('author'),
 FieldPanel('date'),
 StreamFieldPanel('body'),
]

Note: StreamField is not backwards compatible with other field types such as RichTextField. If you need to migrate an existing field to StreamField, refer to Migrating RichTextFields to StreamField.

The parameter to StreamField is a list of (name, block_type) tuples. ‘name’ is used to identify the block type within templates and the internal JSON representation (and should follow standard Python conventions for variable names: lower-case and underscores, no spaces) and ‘block_type’ should be a block definition object as described below. (Alternatively, StreamField can be passed a single StreamBlock instance - see Structural block types.)

This defines the set of available block types that can be used within this field. The author of the page is free to use these blocks as many times as desired, in any order.

StreamField also accepts an optional keyword argument blank, defaulting to false; when this is false, at least one block must be provided for the field to be considered valid.

Basic block types

All block types accept the following optional keyword arguments:

	default

	The default value that a new ‘empty’ block should receive.

	label

	The label to display in the editor interface when referring to this block - defaults to a prettified version of the block name (or, in a context where no name is assigned - such as within a ListBlock - the empty string).

	icon

	The name of the icon to display for this block type in the menu of available block types. For a list of icon names, see the Wagtail style guide, which can be enabled by adding wagtail.contrib.styleguide to your project’s INSTALLED_APPS.

	template

	The path to a Django template that will be used to render this block on the front end. See Template rendering.

	group

	The group used to categorize this block, i.e. any blocks with the same group name will be shown together in the editor interface with the group name as a heading.

The basic block types provided by Wagtail are as follows:

CharBlock

wagtail.core.blocks.CharBlock

A single-line text input. The following keyword arguments are accepted:

	required (default: True)

	If true, the field cannot be left blank.

	max_length, min_length

	Ensures that the string is at most or at least the given length.

	help_text

	Help text to display alongside the field.

	validators

	A list of validation functions for the field (see Django Validators [https://docs.djangoproject.com/en/stable/ref/validators/]).

TextBlock

wagtail.core.blocks.TextBlock

A multi-line text input. As with CharBlock, the keyword arguments required (default: True), max_length, min_length, help_text and validators are accepted.

EmailBlock

wagtail.core.blocks.EmailBlock

A single-line email input that validates that the email is a valid Email Address. The keyword arguments required (default: True), help_text and validators are accepted.

For an example of EmailBlock in use, see Example: PersonBlock

IntegerBlock

wagtail.core.blocks.IntegerBlock

A single-line integer input that validates that the integer is a valid whole number. The keyword arguments required (default: True), max_value, min_value, help_text and validators are accepted.

For an example of IntegerBlock in use, see Example: PersonBlock

FloatBlock

wagtail.core.blocks.FloatBlock

A single-line Float input that validates that the value is a valid floating point number. The keyword arguments required (default: True), max_value, min_value and validators are accepted.

DecimalBlock

wagtail.core.blocks.DecimalBlock

A single-line decimal input that validates that the value is a valid decimal number. The keyword arguments required (default: True), help_text, max_value, min_value, max_digits, decimal_places and validators are accepted.

For an example of DecimalBlock in use, see Example: PersonBlock

RegexBlock

wagtail.core.blocks.RegexBlock

A single-line text input that validates a string against a regex expression. The regular expression used for validation must be supplied as the first argument, or as the keyword argument regex. To customise the message text used to indicate a validation error, pass a dictionary as the keyword argument error_messages containing either or both of the keys required (for the message shown on an empty value) or invalid (for the message shown on a non-matching value):

blocks.RegexBlock(regex=r'^[0-9]{3}$', error_messages={
 'invalid': "Not a valid library card number."
})

The keyword arguments regex, help_text, required (default: True), max_length, min_length, error_messages and validators are accepted.

URLBlock

wagtail.core.blocks.URLBlock

A single-line text input that validates that the string is a valid URL. The keyword arguments required (default: True), max_length, min_length, help_text and validators are accepted.

BooleanBlock

wagtail.core.blocks.BooleanBlock

A checkbox. The keyword arguments required and help_text are accepted. As with Django’s BooleanField, a value of required=True (the default) indicates that the checkbox must be ticked in order to proceed. For a checkbox that can be ticked or unticked, you must explicitly pass in required=False.

DateBlock

wagtail.core.blocks.DateBlock

A date picker. The keyword arguments required (default: True), help_text, format and validators are accepted.

	format (default: None)

	Date format. This must be one of the recognised formats listed in the DATE_INPUT_FORMATS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATE_INPUT_FORMATS] setting. If not specified Wagtail will use WAGTAIL_DATE_FORMAT setting with fallback to ‘%Y-%m-%d’.

TimeBlock

wagtail.core.blocks.TimeBlock

A time picker. The keyword arguments required (default: True), help_text and validators are accepted.

DateTimeBlock

wagtail.core.blocks.DateTimeBlock

A combined date / time picker. The keyword arguments required (default: True), help_text, format and validators are accepted.

	format (default: None)

	Date format. This must be one of the recognised formats listed in the DATETIME_INPUT_FORMATS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATETIME_INPUT_FORMATS] setting. If not specified Wagtail will use WAGTAIL_DATETIME_FORMAT setting with fallback to ‘%Y-%m-%d %H:%M’.

RichTextBlock

wagtail.core.blocks.RichTextBlock

A WYSIWYG editor for creating formatted text including links, bold / italics etc. The keyword arguments required (default: True), help_text, validators, editor and features are accepted.

	editor (default: default)

	The rich text editor to be used (see Rich text).

	features (default: None)

	Specify the set of features allowed (see Limiting features in a rich text field).

RawHTMLBlock

wagtail.core.blocks.RawHTMLBlock

A text area for entering raw HTML which will be rendered unescaped in the page output. The keyword arguments required (default: True), max_length, min_length, help_text and validators are accepted.

Warning

When this block is in use, there is nothing to prevent editors from inserting malicious scripts into the page, including scripts that would allow the editor to acquire administrator privileges when another administrator views the page. Do not use this block unless your editors are fully trusted.

BlockQuoteBlock

wagtail.core.blocks.BlockQuoteBlock

A text field, the contents of which will be wrapped in an HTML <blockquote> tag pair. The keyword arguments required (default: True), max_length, min_length, help_text and validators are accepted.

ChoiceBlock

wagtail.core.blocks.ChoiceBlock

A dropdown select box for choosing from a list of choices. The following keyword arguments are accepted:

	choices

	A list of choices, in any format accepted by Django’s choices [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.Field.choices] parameter for model fields, or a callable returning such a list.

	required (default: True)

	If true, the field cannot be left blank.

	help_text

	Help text to display alongside the field.

	validators

	A list of validation functions for the field (see Django Validators [https://docs.djangoproject.com/en/stable/ref/validators/]).

ChoiceBlock can also be subclassed to produce a reusable block with the same list of choices everywhere it is used. For example, a block definition such as:

blocks.ChoiceBlock(choices=[
 ('tea', 'Tea'),
 ('coffee', 'Coffee'),
], icon='cup')

could be rewritten as a subclass of ChoiceBlock:

class DrinksChoiceBlock(blocks.ChoiceBlock):
 choices = [
 ('tea', 'Tea'),
 ('coffee', 'Coffee'),
]

 class Meta:
 icon = 'cup'

StreamField definitions can then refer to DrinksChoiceBlock() in place of the full ChoiceBlock definition. Note that this only works when choices is a fixed list, not a callable.

PageChooserBlock

wagtail.core.blocks.PageChooserBlock

A control for selecting a page object, using Wagtail’s page browser. The following keyword arguments are accepted:

	required (default: True)

	If true, the field cannot be left blank.

	page_type (default: Page)

	Restrict choices to one or more specific page types. Accepts a page model class, model name (as a string), or a list or tuple of these.

	can_choose_root (default: False)

	If true, the editor can choose the tree root as a page. Normally this would be undesirable, since the tree root is never a usable page, but in some specialised cases it may be appropriate. For example, a block providing a feed of related articles could use a PageChooserBlock to select which subsection of the site articles will be taken from, with the root corresponding to ‘everywhere’.

DocumentChooserBlock

wagtail.documents.blocks.DocumentChooserBlock

A control to allow the editor to select an existing document object, or upload a new one. The keyword argument required (default: True) is accepted.

ImageChooserBlock

wagtail.images.blocks.ImageChooserBlock

A control to allow the editor to select an existing image, or upload a new one. The keyword argument required (default: True) is accepted.

SnippetChooserBlock

wagtail.snippets.blocks.SnippetChooserBlock

A control to allow the editor to select a snippet object. Requires one positional argument: the snippet class to choose from. The keyword argument required (default: True) is accepted.

EmbedBlock

wagtail.embeds.blocks.EmbedBlock

A field for the editor to enter a URL to a media item (such as a YouTube video) to appear as embedded media on the page. The keyword arguments required (default: True), max_length, min_length and help_text are accepted.

StaticBlock

wagtail.core.blocks.StaticBlock

A block which doesn’t have any fields, thus passes no particular values to its template during rendering. This can be useful if you need the editor to be able to insert some content which is always the same or doesn’t need to be configured within the page editor, such as an address, embed code from third-party services, or more complex pieces of code if the template uses template tags.

By default, some default text (which contains the label keyword argument if you pass it) will be displayed in the editor interface, so that the block doesn’t look empty. But you can also customise it entirely by passing a text string as the admin_text keyword argument instead:

blocks.StaticBlock(
 admin_text='Latest posts: no configuration needed.',
 # or admin_text=mark_safe('Latest posts: no configuration needed.'),
 template='latest_posts.html')

StaticBlock can also be subclassed to produce a reusable block with the same configuration everywhere it is used:

class LatestPostsStaticBlock(blocks.StaticBlock):
 class Meta:
 icon = 'user'
 label = 'Latest posts'
 admin_text = '{label}: configured elsewhere'.format(label=label)
 template = 'latest_posts.html'

Structural block types

In addition to the basic block types above, it is possible to define new block types made up of sub-blocks: for example, a ‘person’ block consisting of sub-blocks for first name, surname and image, or a ‘carousel’ block consisting of an unlimited number of image blocks. These structures can be nested to any depth, making it possible to have a structure containing a list, or a list of structures.

StructBlock

wagtail.core.blocks.StructBlock

A block consisting of a fixed group of sub-blocks to be displayed together. Takes a list of (name, block_definition) tuples as its first argument:

('person', blocks.StructBlock([
 ('first_name', blocks.CharBlock()),
 ('surname', blocks.CharBlock()),
 ('photo', ImageChooserBlock(required=False)),
 ('biography', blocks.RichTextBlock()),
], icon='user'))

Alternatively, the list of sub-blocks can be provided in a subclass of StructBlock:

class PersonBlock(blocks.StructBlock):
 first_name = blocks.CharBlock()
 surname = blocks.CharBlock()
 photo = ImageChooserBlock(required=False)
 biography = blocks.RichTextBlock()

 class Meta:
 icon = 'user'

The Meta class supports the properties default, label, icon and template, which have the same meanings as when they are passed to the block’s constructor.

This defines PersonBlock() as a block type that can be re-used as many times as you like within your model definitions:

body = StreamField([
 ('heading', blocks.CharBlock(classname="full title")),
 ('paragraph', blocks.RichTextBlock()),
 ('image', ImageChooserBlock()),
 ('person', PersonBlock()),
])

Further options are available for customising the display of a StructBlock within the page editor - see Custom editing interfaces for StructBlock.

You can also customise how the value of a StructBlock is prepared for using in templates - see Custom value class for StructBlock.

ListBlock

wagtail.core.blocks.ListBlock

A block consisting of many sub-blocks, all of the same type. The editor can add an unlimited number of sub-blocks, and re-order and delete them. Takes the definition of the sub-block as its first argument:

('ingredients_list', blocks.ListBlock(blocks.CharBlock(label="Ingredient")))

Any block type is valid as the sub-block type, including structural types:

('ingredients_list', blocks.ListBlock(blocks.StructBlock([
 ('ingredient', blocks.CharBlock()),
 ('amount', blocks.CharBlock(required=False)),
])))

StreamBlock

wagtail.core.blocks.StreamBlock

A block consisting of a sequence of sub-blocks of different types, which can be mixed and reordered at will. Used as the overall mechanism of the StreamField itself, but can also be nested or used within other structural block types. Takes a list of (name, block_definition) tuples as its first argument:

('carousel', blocks.StreamBlock(
 [
 ('image', ImageChooserBlock()),
 ('quotation', blocks.StructBlock([
 ('text', blocks.TextBlock()),
 ('author', blocks.CharBlock()),
])),
 ('video', EmbedBlock()),
],
 icon='cogs'
))

As with StructBlock, the list of sub-blocks can also be provided as a subclass of StreamBlock:

class CarouselBlock(blocks.StreamBlock):
 image = ImageChooserBlock()
 quotation = blocks.StructBlock([
 ('text', blocks.TextBlock()),
 ('author', blocks.CharBlock()),
])
 video = EmbedBlock()

 class Meta:
 icon='cogs'

Since StreamField accepts an instance of StreamBlock as a parameter, in place of a list of block types, this makes it possible to re-use a common set of block types without repeating definitions:

class HomePage(Page):
 carousel = StreamField(CarouselBlock(max_num=10, block_counts={'video': {'max_num': 2}}))

StreamBlock accepts the following options as either keyword arguments or Meta properties:

	required (default: True)

	If true, at least one sub-block must be supplied. This is ignored when using the StreamBlock as the top-level block of a StreamField; in this case the StreamField’s blank property is respected instead.

	min_num

	Minimum number of sub-blocks that the stream must have.

	max_num

	Maximum number of sub-blocks that the stream may have.

	block_counts

	Specifies the minimum and maximum number of each block type, as a dictionary mapping block names to dicts with (optional) min_num and max_num fields.

Example: PersonBlock

This example demonstrates how the basic block types introduced above can be combined into a more complex block type based on StructBlock:

from wagtail.core import blocks

class PersonBlock(blocks.StructBlock):
 name = blocks.CharBlock()
 height = blocks.DecimalBlock()
 age = blocks.IntegerBlock()
 email = blocks.EmailBlock()

 class Meta:
 template = 'blocks/person_block.html'

Template rendering

StreamField provides an HTML representation for the stream content as a whole, as well as for each individual block. To include this HTML into your page, use the {% include_block %} tag:

{% load wagtailcore_tags %}

 ...

{% include_block page.body %}

In the default rendering, each block of the stream is wrapped in a <div class="block-my_block_name"> element (where my_block_name is the block name given in the StreamField definition). If you wish to provide your own HTML markup, you can instead iterate over the field’s value, and invoke {% include_block %} on each block in turn:

{% load wagtailcore_tags %}

 ...

<article>
 {% for block in page.body %}
 <section>{% include_block block %}</section>
 {% endfor %}
</article>

For more control over the rendering of specific block types, each block object provides block_type and value properties:

{% load wagtailcore_tags %}

 ...

<article>
 {% for block in page.body %}
 {% if block.block_type == 'heading' %}
 <h1>{{ block.value }}</h1>
 {% else %}
 <section class="block-{{ block.block_type }}">
 {% include_block block %}
 </section>
 {% endif %}
 {% endfor %}
</article>

By default, each block is rendered using simple, minimal HTML markup, or no markup at all. For example, a CharBlock value is rendered as plain text, while a ListBlock outputs its child blocks in a wrapper. To override this with your own custom HTML rendering, you can pass a template argument to the block, giving the filename of a template file to be rendered. This is particularly useful for custom block types derived from StructBlock:

('person', blocks.StructBlock(
 [
 ('first_name', blocks.CharBlock()),
 ('surname', blocks.CharBlock()),
 ('photo', ImageChooserBlock(required=False)),
 ('biography', blocks.RichTextBlock()),
],
 template='myapp/blocks/person.html',
 icon='user'
))

Or, when defined as a subclass of StructBlock:

class PersonBlock(blocks.StructBlock):
 first_name = blocks.CharBlock()
 surname = blocks.CharBlock()
 photo = ImageChooserBlock(required=False)
 biography = blocks.RichTextBlock()

 class Meta:
 template = 'myapp/blocks/person.html'
 icon = 'user'

Within the template, the block value is accessible as the variable value:

{% load wagtailimages_tags %}

<div class="person">
 {% image value.photo width-400 %}
 <h2>{{ value.first_name }} {{ value.surname }}</h2>
 {{ value.biography }}
</div>

Since first_name, surname, photo and biography are defined as blocks in their own right, this could also be written as:

{% load wagtailcore_tags wagtailimages_tags %}

<div class="person">
 {% image value.photo width-400 %}
 <h2>{% include_block value.first_name %} {% include_block value.surname %}</h2>
 {% include_block value.biography %}
</div>

Writing {{ my_block }} is roughly equivalent to {% include_block my_block %}, but the short form is more restrictive, as it does not pass variables from the calling template such as request or page; for this reason, it is recommended that you only use it for simple values that do not render HTML of their own. For example, if our PersonBlock used the template:

{% load wagtailimages_tags %}

<div class="person">
 {% image value.photo width-400 %}
 <h2>{{ value.first_name }} {{ value.surname }}</h2>

 {% if request.user.is_authenticated %}
 Contact this person
 {% endif %}

 {{ value.biography }}
</div>

then the request.user.is_authenticated test would not work correctly when rendering the block through a {{ ... }} tag:

{# Incorrect: #}

{% for block in page.body %}
 {% if block.block_type == 'person' %}
 <div>
 {{ block }}
 </div>
 {% endif %}
{% endfor %}

{# Correct: #}

{% for block in page.body %}
 {% if block.block_type == 'person' %}
 <div>
 {% include_block block %}
 </div>
 {% endif %}
{% endfor %}

Like Django’s {% include %} tag, {% include_block %} also allows passing additional variables to the included template, through the syntax {% include_block my_block with foo="bar" %}:

{# In page template: #}

{% for block in page.body %}
 {% if block.block_type == 'person' %}
 {% include_block block with classname="important" %}
 {% endif %}
{% endfor %}

{# In PersonBlock template: #}

<div class="{{ classname }}">
 ...
</div>

The syntax {% include_block my_block with foo="bar" only %} is also supported, to specify that no variables from the parent template other than foo will be passed to the child template.

As well as passing variables from the parent template, block subclasses can pass additional template variables of their own by overriding the get_context method:

import datetime

class EventBlock(blocks.StructBlock):
 title = blocks.CharBlock()
 date = blocks.DateBlock()

 def get_context(self, value, parent_context=None):
 context = super().get_context(value, parent_context=parent_context)
 context['is_happening_today'] = (value['date'] == datetime.date.today())
 return context

 class Meta:
 template = 'myapp/blocks/event.html'

In this example, the variable is_happening_today will be made available within the block template. The parent_context keyword argument is available when the block is rendered through an {% include_block %} tag, and is a dict of variables passed from the calling template.

BoundBlocks and values

All block types, not just StructBlock, accept a template parameter to determine how they will be rendered on a page. However, for blocks that handle basic Python data types, such as CharBlock and IntegerBlock, there are some limitations on where the template will take effect, since those built-in types (str, int and so on) cannot be ‘taught’ about their template rendering. As an example of this, consider the following block definition:

class HeadingBlock(blocks.CharBlock):
 class Meta:
 template = 'blocks/heading.html'

where blocks/heading.html consists of:

<h1>{{ value }}</h1>

This gives us a block that behaves as an ordinary text field, but wraps its output in <h1> tags whenever it is rendered:

class BlogPage(Page):
 body = StreamField([
 # ...
 ('heading', HeadingBlock()),
 # ...
])

{% load wagtailcore_tags %}

{% for block in page.body %}
 {% if block.block_type == 'heading' %}
 {% include_block block %} {# This block will output its own <h1>...</h1> tags. #}
 {% endif %}
{% endfor %}

This kind of arrangement - a value that supposedly represents a plain text string, but has its own custom HTML representation when output on a template - would normally be a very messy thing to achieve in Python, but it works here because the items you get when iterating over a StreamField are not actually the ‘native’ values of the blocks. Instead, each item is returned as an instance of BoundBlock - an object that represents the pairing of a value and its block definition. By keeping track of the block definition, a BoundBlock always knows which template to render. To get to the underlying value - in this case, the text content of the heading - you would need to access block.value. Indeed, if you were to output {% include_block block.value %} on the page, you would find that it renders as plain text, without the <h1> tags.

(More precisely, the items returned when iterating over a StreamField are instances of a class StreamChild, which provides the block_type property as well as value.)

Experienced Django developers may find it helpful to compare this to the BoundField class in Django’s forms framework, which represents the pairing of a form field value with its corresponding form field definition, and therefore knows how to render the value as an HTML form field.

Most of the time, you won’t need to worry about these internal details; Wagtail will use the template rendering wherever you would expect it to. However, there are certain cases where the illusion isn’t quite complete - namely, when accessing children of a ListBlock or StructBlock. In these cases, there is no BoundBlock wrapper, and so the item cannot be relied upon to know its own template rendering. For example, consider the following setup, where our HeadingBlock is a child of a StructBlock:

class EventBlock(blocks.StructBlock):
 heading = HeadingBlock()
 description = blocks.TextBlock()
 # ...

 class Meta:
 template = 'blocks/event.html'

In blocks/event.html:

{% load wagtailcore_tags %}

<div class="event {% if value.heading == 'Party!' %}lots-of-balloons{% endif %}">
 {% include_block value.heading %}
 - {% include_block value.description %}
</div>

In this case, value.heading returns the plain string value rather than a BoundBlock; this is necessary because otherwise the comparison in {% if value.heading == 'Party!' %} would never succeed. This in turn means that {% include_block value.heading %} renders as the plain string, without the <h1> tags. To get the HTML rendering, you need to explicitly access the BoundBlock instance through value.bound_blocks.heading:

{% load wagtailcore_tags %}

<div class="event {% if value.heading == 'Party!' %}lots-of-balloons{% endif %}">
 {% include_block value.bound_blocks.heading %}
 - {% include_block value.description %}
</div>

In practice, it would probably be more natural and readable to make the <h1> tag explicit in the EventBlock’s template:

{% load wagtailcore_tags %}

<div class="event {% if value.heading == 'Party!' %}lots-of-balloons{% endif %}">
 <h1>{{ value.heading }}</h1>
 - {% include_block value.description %}
</div>

This limitation does not apply to StructBlock and StreamBlock values as children of a StructBlock, because Wagtail implements these as complex objects that know their own template rendering, even when not wrapped in a BoundBlock. For example, if a StructBlock is nested in another StructBlock, as in:

class EventBlock(blocks.StructBlock):
 heading = HeadingBlock()
 description = blocks.TextBlock()
 guest_speaker = blocks.StructBlock([
 ('first_name', blocks.CharBlock()),
 ('surname', blocks.CharBlock()),
 ('photo', ImageChooserBlock()),
], template='blocks/speaker.html')

then {% include_block value.guest_speaker %} within the EventBlock’s template will pick up the template rendering from blocks/speaker.html as intended.

In summary, interactions between BoundBlocks and plain values work according to the following rules:

	When iterating over the value of a StreamField or StreamBlock (as in {% for block in page.body %}), you will get back a sequence of BoundBlocks.

	If you have a BoundBlock instance, you can access the plain value as block.value.

	Accessing a child of a StructBlock (as in value.heading) will return a plain value; to retrieve the BoundBlock instead, use value.bound_blocks.heading.

	The value of a ListBlock is a plain Python list; iterating over it returns plain child values.

	StructBlock and StreamBlock values always know how to render their own templates, even if you only have the plain value rather than the BoundBlock.

Custom editing interfaces for StructBlock

To customise the styling of a StructBlock as it appears in the page editor, you can specify a form_classname attribute (either as a keyword argument to the StructBlock constructor, or in a subclass’s Meta) to override the default value of struct-block:

class PersonBlock(blocks.StructBlock):
 first_name = blocks.CharBlock()
 surname = blocks.CharBlock()
 photo = ImageChooserBlock(required=False)
 biography = blocks.RichTextBlock()

 class Meta:
 icon = 'user'
 form_classname = 'person-block struct-block'

You can then provide custom CSS for this block, targeted at the specified classname, by using the insert_editor_css hook.

Note

Wagtail’s editor styling has some built in styling for the struct-block class and other related elements. If you specify a value for form_classname, it will overwrite the classes that are already applied to StructBlock, so you must remember to specify the struct-block as well.

For more extensive customisations that require changes to the HTML markup as well, you can override the form_template attribute in Meta to specify your own template path. The following variables are available on this template:

	children

	An OrderedDict of BoundBlocks for all of the child blocks making up this StructBlock; typically your template will call render_form on each of these.

	help_text

	The help text for this block, if specified.

	classname

	The class name passed as form_classname (defaults to struct-block).

	block_definition

	The StructBlock instance that defines this block.

	prefix

	The prefix used on form fields for this block instance, guaranteed to be unique across the form.

To add additional variables, you can override the block’s get_form_context method:

class PersonBlock(blocks.StructBlock):
 first_name = blocks.CharBlock()
 surname = blocks.CharBlock()
 photo = ImageChooserBlock(required=False)
 biography = blocks.RichTextBlock()

 def get_form_context(self, value, prefix='', errors=None):
 context = super().get_form_context(value, prefix=prefix, errors=errors)
 context['suggested_first_names'] = ['John', 'Paul', 'George', 'Ringo']
 return context

 class Meta:
 icon = 'user'
 form_template = 'myapp/block_forms/person.html'

Custom value class for StructBlock

To customise the methods available for a StructBlock value, you can specify a value_class attribute (either as a keyword argument to the StructBlock constructor, or in a subclass’s Meta) to override how the value is prepared.

This value_class must be a subclass of StructValue, any additional methods can access the value from sub-blocks via the block key on self (e.g. self.get('my_block')).

Example:

from wagtail.core.models import Page
from wagtail.core.blocks import (
 CharBlock, PageChooserBlock, StructValue, StructBlock, TextBlock, URLBlock)

class LinkStructValue(StructValue):
 def url(self):
 external_url = self.get('external_url')
 page = self.get('page')
 if external_url:
 return external_url
 elif page:
 return page.url

class QuickLinkBlock(StructBlock):
 text = CharBlock(label="link text", required=True)
 page = PageChooserBlock(label="page", required=False)
 external_url = URLBlock(label="external URL", required=False)

 class Meta:
 icon = 'site'
 value_class = LinkStructValue

class MyPage(Page):
 quick_links = StreamField([('links', QuickLinkBlock())], blank=True)
 quotations = StreamField([('quote', StructBlock([
 ('quote', TextBlock(required=True)),
 ('page', PageChooserBlock(required=False)),
 ('external_url', URLBlock(required=False)),
], icon='openquote', value_class=LinkStructValue))], blank=True)

 content_panels = Page.content_panels + [
 StreamFieldPanel('quick_links'),
 StreamFieldPanel('quotations'),
]

Your extended value class methods will be available in your template:

{% load wagtailcore_tags %}

 {% for link in page.quick_links %}
 {{ link.value.text }}
 {% endfor %}

<div>
 {% for quotation in page.quotations %}
 <blockquote cite="{{ quotation.value.url }}">
 {{ quotation.value.quote }}
 </blockquote>
 {% endfor %}
</div>

Custom block types

If you need to implement a custom UI, or handle a datatype that is not provided by Wagtail’s built-in block types (and cannot be built up as a structure of existing fields), it is possible to define your own custom block types. For further guidance, refer to the source code of Wagtail’s built-in block classes.

For block types that simply wrap an existing Django form field, Wagtail provides an abstract class wagtail.core.blocks.FieldBlock as a helper. Subclasses just need to set a field property that returns the form field object:

class IPAddressBlock(FieldBlock):
 def __init__(self, required=True, help_text=None, **kwargs):
 self.field = forms.GenericIPAddressField(required=required, help_text=help_text)
 super().__init__(**kwargs)

Migrations

StreamField definitions within migrations

As with any model field in Django, any changes to a model definition that affect a StreamField will result in a migration file that contains a ‘frozen’ copy of that field definition. Since a StreamField definition is more complex than a typical model field, there is an increased likelihood of definitions from your project being imported into the migration – which would cause problems later on if those definitions are moved or deleted.

To mitigate this, StructBlock, StreamBlock and ChoiceBlock implement additional logic to ensure that any subclasses of these blocks are deconstructed to plain instances of StructBlock, StreamBlock and ChoiceBlock – in this way, the migrations avoid having any references to your custom class definitions. This is possible because these block types provide a standard pattern for inheritance, and know how to reconstruct the block definition for any subclass that follows that pattern.

If you subclass any other block class, such as FieldBlock, you will need to either keep that class definition in place for the lifetime of your project, or implement a custom deconstruct method [https://docs.djangoproject.com/en/stable/topics/migrations/#custom-deconstruct-method] that expresses your block entirely in terms of classes that are guaranteed to remain in place. Similarly, if you customise a StructBlock, StreamBlock or ChoiceBlock subclass to the point where it can no longer be expressed as an instance of the basic block type – for example, if you add extra arguments to the constructor – you will need to provide your own deconstruct method.

Migrating RichTextFields to StreamField

If you change an existing RichTextField to a StreamField, the database migration will complete with no errors, since both fields use a text column within the database. However, StreamField uses a JSON representation for its data, so the existing text requires an extra conversion step in order to become accessible again. For this to work, the StreamField needs to include a RichTextBlock as one of the available block types. (When updating the model, don’t forget to change FieldPanel to StreamFieldPanel too.) Create the migration as normal using ./manage.py makemigrations, then edit it as follows (in this example, the ‘body’ field of the demo.BlogPage model is being converted to a StreamField with a RichTextBlock named rich_text):

-*- coding: utf-8 -*-
from django.db import models, migrations
from wagtail.core.rich_text import RichText

def convert_to_streamfield(apps, schema_editor):
 BlogPage = apps.get_model("demo", "BlogPage")
 for page in BlogPage.objects.all():
 if page.body.raw_text and not page.body:
 page.body = [('rich_text', RichText(page.body.raw_text))]
 page.save()

def convert_to_richtext(apps, schema_editor):
 BlogPage = apps.get_model("demo", "BlogPage")
 for page in BlogPage.objects.all():
 if page.body.raw_text is None:
 raw_text = ''.join([
 child.value.source for child in page.body
 if child.block_type == 'rich_text'
])
 page.body = raw_text
 page.save()

class Migration(migrations.Migration):

 dependencies = [
 # leave the dependency line from the generated migration intact!
 ('demo', '0001_initial'),
]

 operations = [
 # leave the generated AlterField intact!
 migrations.AlterField(
 model_name='BlogPage',
 name='body',
 field=wagtail.core.fields.StreamField([('rich_text', wagtail.core.blocks.RichTextBlock())]),
),

 migrations.RunPython(
 convert_to_streamfield,
 convert_to_richtext,
),
]

Note that the above migration will work on published Page objects only. If you also need to migrate draft pages and page revisions, then edit the migration as in the following example instead:

-*- coding: utf-8 -*-
import json

from django.core.serializers.json import DjangoJSONEncoder
from django.db import migrations, models

from wagtail.core.rich_text import RichText

def page_to_streamfield(page):
 changed = False
 if page.body.raw_text and not page.body:
 page.body = [('rich_text', {'rich_text': RichText(page.body.raw_text)})]
 changed = True
 return page, changed

def pagerevision_to_streamfield(revision_data):
 changed = False
 body = revision_data.get('body')
 if body:
 try:
 json.loads(body)
 except ValueError:
 revision_data['body'] = json.dumps(
 [{
 "value": {"rich_text": body},
 "type": "rich_text"
 }],
 cls=DjangoJSONEncoder)
 changed = True
 else:
 # It's already valid JSON. Leave it.
 pass
 return revision_data, changed

def page_to_richtext(page):
 changed = False
 if page.body.raw_text is None:
 raw_text = ''.join([
 child.value['rich_text'].source for child in page.body
 if child.block_type == 'rich_text'
])
 page.body = raw_text
 changed = True
 return page, changed

def pagerevision_to_richtext(revision_data):
 changed = False
 body = revision_data.get('body', 'definitely non-JSON string')
 if body:
 try:
 body_data = json.loads(body)
 except ValueError:
 # It's not apparently a StreamField. Leave it.
 pass
 else:
 raw_text = ''.join([
 child['value']['rich_text'] for child in body_data
 if child['type'] == 'rich_text'
])
 revision_data['body'] = raw_text
 changed = True
 return revision_data, changed

def convert(apps, schema_editor, page_converter, pagerevision_converter):
 BlogPage = apps.get_model("demo", "BlogPage")
 for page in BlogPage.objects.all():

 page, changed = page_converter(page)
 if changed:
 page.save()

 for revision in page.revisions.all():
 revision_data = json.loads(revision.content_json)
 revision_data, changed = pagerevision_converter(revision_data)
 if changed:
 revision.content_json = json.dumps(revision_data, cls=DjangoJSONEncoder)
 revision.save()

def convert_to_streamfield(apps, schema_editor):
 return convert(apps, schema_editor, page_to_streamfield, pagerevision_to_streamfield)

def convert_to_richtext(apps, schema_editor):
 return convert(apps, schema_editor, page_to_richtext, pagerevision_to_richtext)

class Migration(migrations.Migration):

 dependencies = [
 # leave the dependency line from the generated migration intact!
 ('demo', '0001_initial'),
]

 operations = [
 # leave the generated AlterField intact!
 migrations.AlterField(
 model_name='BlogPage',
 name='body',
 field=wagtail.core.fields.StreamField([('rich_text', wagtail.core.blocks.RichTextBlock())]),
),

 migrations.RunPython(
 convert_to_streamfield,
 convert_to_richtext,
),
]

Permissions

Wagtail adapts and extends the Django permission system [https://docs.djangoproject.com/en/stable/topics/auth/default/#topic-authorization] to cater for the needs of website content creation, such as moderation workflows, and multiple teams working on different areas of a site (or multiple sites within the same Wagtail installation). Permissions can be configured through the ‘Groups’ area of the Wagtail admin interface, under ‘Settings’.

Page permissions

Permissions can be attached at any point in the page tree, and propagate down the tree. For example, if a site had the page tree:

MegaCorp/
 About us
 Offices/
 UK
 France
 Germany

then a group with ‘edit’ permissions on the ‘Offices’ page would automatically receive the ability to edit the ‘UK’, ‘France’ and ‘Germany’ pages. Permissions can be set globally for the entire tree by assigning them on the ‘root’ page - since all pages must exist underneath the root node, and the root cannot be deleted, this permission will cover all pages that exist now and in future.

Whenever a user creates a page through the Wagtail admin, that user is designated as the owner of that page. Any user with ‘add’ permission has the ability to edit pages they own, as well as adding new ones. This is in recognition of the fact that creating pages is typically an iterative process involving creating a number of draft versions - giving a user the ability to create a draft but not letting them subsequently edit it would not be very useful. Ability to edit a page also implies the ability to delete it; unlike Django’s standard permission model, there is no distinct ‘delete’ permission.

The full set of available permission types is as follows:

	Add - grants the ability to create new subpages underneath this page (provided the page model permits this - see Parent page / subpage type rules), and to edit and delete pages owned by the current user. Published pages cannot be deleted unless the user also has ‘publish’ permission.

	Edit - grants the ability to edit and delete this page, and any pages underneath it, regardless of ownership. A user with only ‘edit’ permission may not create new pages, only edit existing ones. Published pages cannot be deleted unless the user also has ‘publish’ permission.

	Publish - grants the ability to publish and unpublish this page and/or its children. A user without publish permission cannot directly make changes that are visible to visitors of the website; instead, they must submit their changes for moderation (which will send a notification to users with publish permission). Publish permission is independent of edit permission; a user with only publish permission will not be able to make any edits of their own.

	Bulk delete - allows a user to delete pages that have descendants, in a single operation. Without this permission, a user has to delete the descendant pages individually before deleting the parent. This is a safeguard against accidental deletion. This permission must be used in conjunction with ‘add’ / ‘edit’ permission, as it does not provide any deletion rights of its own; it only provides a ‘shortcut’ for the permissions the user has already. For example, a user with just ‘add’ and ‘bulk delete’ permissions will only be able to bulk-delete if all the affected pages are owned by that user, and are unpublished.

	Lock - grants the ability to lock or unlock this page (and any pages underneath it) for editing, preventing users from making any further edits to it.

Drafts can be viewed only if the user has either Edit or Publish permission.

Image / document permissions

The permission rules for images and documents work on a similar basis to pages. Images and documents are considered to be ‘owned’ by the user who uploaded them; a user with ‘add’ permission also has the ability to edit items they own; and deletion is considered equivalent to editing rather than having a specific permission type.

Access to specific sets of images and documents can be controlled by setting up collections. By default all images and documents belong to the ‘root’ collection, but new collections can be created through the Settings -> Collections area of the admin interface. Permissions set on ‘root’ apply to all collections, so a user with ‘edit’ permission for images on root can edit all images; permissions set on other collections apply to that collection only.

Advanced topics

	Images
	Generating renditions in Python

	Animated GIF support

	Image file formats

	Custom image models

	Changing rich text representation

	Feature Detection

	Dynamic image serve view

	Documents
	Custom document model

	Embedded content
	Embedding content on your site

	Configuring embed “finders”

	The Embed model

	How to add Wagtail into an existing Django project
	Middleware (settings.py)

	Apps (settings.py)

	URL Patterns

	Ready to Use Example Configuration Files

	Deploying Wagtail
	On your server

	On Divio Cloud

	On PythonAnywhere

	On other PAASs and IAASs

	Deployment tips

	Performance
	Editor interface

	Public users

	Private pages
	Setting up a login page

	Setting up a global “password required” page

	Setting a “password required” page for a specific page type

	Customising Wagtail
	Customising the editing interface

	Rich text internals

	Extending the Draftail Editor

	Extending the Hallo Editor

	Customising admin templates

	Custom user models

	Third-party tutorials

	Jinja2 template support
	Configuring Django

	self in templates

	Template tags, functions & filters

	Testing your Wagtail site
	WagtailPageTests

	Form data helpers

	Fixtures

	Wagtail API
	Wagtail API v2 Configuration Guide

	Wagtail API v2 Usage Guide

	Building a site with AMP support
	Overview

	Creating the second page tree

	Making pages aware of “AMP mode”

	Write a template context processor so that AMP state can be checked in templates

	Using a different page template when AMP mode is active

	Overriding the {% image %} tag to output <amp-img> tags

Images

	Generating renditions in Python

	Animated GIF support

	Image file formats
	Using the picture element

	Customizing output formats

	Custom image models
	Referring to the image model

	Changing rich text representation

	Feature Detection
	Installation

	Dynamic image serve view
	Setup

	Usage

	Advanced configuration

Generating renditions in Python

Rendered versions of original images generated by the Wagtail {% image %} template tag are called “renditions”,
and are stored as new image files in the site’s [media]/images directory on the first invocation.

Image renditions can also be generated dynamically from Python via the native get_rendition() method, for example:

newimage = myimage.get_rendition('fill-300x150|jpegquality-60')

If myimage had a filename of foo.jpg, a new rendition of the image file called
foo.fill-300x150.jpegquality-60.jpg would be generated and saved into the site’s [media]/images directory.
Argument options are identical to the {% image %} template tag’s filter spec, and should be separated with |.

The generated Rendition object will have properties specific to that version of the image, such as
url, width and height, so something like this could be used in an API generator, for example:

url = myimage.get_rendition('fill-300x186|jpegquality-60').url

Properties belonging to the original image from which the generated Rendition was created, such as title, can
be accessed through the Rendition’s image property:

>>> newimage.image.title
'Blue Sky'
>>> newimage.image.is_landscape()
True

See also: Using images in templates

Animated GIF support

Pillow, Wagtail’s default image library, doesn’t support animated
GIFs.

To get animated GIF support, you will have to
install Wand [http://docs.wand-py.org/en/0.4.2/guide/install.html].
Wand is a binding to ImageMagick so make sure that has been installed as well.

When installed, Wagtail will automatically use Wand for resizing GIF
files but continue to resize other images with Pillow.

Image file formats

Using the picture element

The picture element [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/picture]
can be used with the format-<type> image operation to specify different
image formats and let the browser choose the one it prefers. For example:

{% load wagtailimages_tags %}

<picture>
 {% image myimage width-1000 format-webp as image_webp %}
 <source srcset="{{ image_webp.url }}" type="image/webp">

 {% image myimage width-1000 format-png as image_png %}
 <source srcset="{{ image_png.url }}" type="image/png">

 {{ image_png }}
</picture>

Customizing output formats

By default all bmp and webp images are converted to the png format
when no image output format is given.

The default conversion mapping can be changed by setting the
WAGTAILIMAGES_FORMAT_CONVERSIONS to a dictionary which maps the input type
to an output type.

For example:

WAGTAILIMAGES_FORMAT_CONVERSIONS = {
 'bmp': 'jpeg',
 'webp': 'webp',
}

will convert bmp images to jpeg and disable the default webp
to png conversion.

Custom image models

The Image model can be customised, allowing additional fields to be added
to images.

To do this, you need to add two models to your project:

	The image model itself that inherits from
wagtail.images.models.AbstractImage. This is where you would add
your additional fields

	The renditions model that inherits from
wagtail.images.models.AbstractRendition. This is used to store
renditions for the new model.

Here’s an example:

models.py
from django.db import models

from wagtail.images.models import Image, AbstractImage, AbstractRendition

class CustomImage(AbstractImage):
 # Add any extra fields to image here

 # eg. To add a caption field:
 # caption = models.CharField(max_length=255, blank=True)

 admin_form_fields = Image.admin_form_fields + (
 # Then add the field names here to make them appear in the form:
 # 'caption',
)

class CustomRendition(AbstractRendition):
 image = models.ForeignKey(CustomImage, on_delete=models.CASCADE, related_name='renditions')

 class Meta:
 unique_together = (
 ('image', 'filter_spec', 'focal_point_key'),
)

Note

Fields defined on a custom image model must either be set as non-required
(blank=True), or specify a default value - this is because uploading
the image and entering custom data happen as two separate actions, and
Wagtail needs to be able to create an image record immediately on upload.

Then set the WAGTAILIMAGES_IMAGE_MODEL setting to point to it:

WAGTAILIMAGES_IMAGE_MODEL = 'images.CustomImage'

Migrating from the builtin image model

When changing an existing site to use a custom image model, no images will
be copied to the new model automatically. Copying old images to the new
model would need to be done manually with a
data migration [https://docs.djangoproject.com/en/stable/topics/migrations/#data-migrations].

Any templates that reference the builtin image model will still continue to
work as before but would need to be updated in order to see any new images.

Referring to the image model

	
wagtail.images.get_image_model()

	Get the image model from the WAGTAILIMAGES_IMAGE_MODEL setting.
Useful for developers making Wagtail plugins that need the image model.
Defaults to the standard Image model
if no custom model is defined.

	
wagtail.images.get_image_model_string()

	Get the dotted app.Model name for the image model as a string.
Useful for developers making Wagtail plugins that need to refer to the
image model, such as in foreign keys, but the model itself is not required.

Changing rich text representation

The HTML representation of an image in rich text can be customised - for example, to display captions or custom fields.

To do this requires subclassing Format (see Image Formats in the Rich Text Editor), and overriding its image_to_html method.

You may then register formats of your subclass using register_image_format as usual.

image_formats.py
from wagtail.images.formats import Format, register_image_format

class SubclassedImageFormat(Format):

 def image_to_html(self, image, alt_text, extra_attributes=None):

 custom_html = # the custom HTML representation of your image here
 # in Format, the image's rendition.img_tag(extra_attributes) is used to generate the HTML
 # representation

 return custom_html

register_image_format(
 SubclassedImageFormat('subclassed_format', 'Subclassed Format', classnames, filter_spec)
)

As an example, let’s say you want the alt text to be displayed as a caption for the image as well:

image_formats.py
from django.utils.html import format_html
from wagtail.images.formats import Format, register_image_format

class CaptionedImageFormat(Format):

 def image_to_html(self, image, alt_text, extra_attributes=None):

 default_html = super().image_to_html(image, alt_text, extra_attributes)

 return format_html("{}<figcaption>{}</figcaption>", default_html, alt_text)

register_image_format(
 CaptionedImageFormat('captioned_fullwidth', 'Full width captioned', 'bodytext-image', 'width-750')
)

Note

Any custom HTML image features will not be displayed in the Draftail editor, only on the published page.

Feature Detection

Wagtail has the ability to automatically detect faces and features inside your images and crop the images to those features.

Feature detection uses OpenCV [https://opencv.org], the Open Source Computer Vision Library, to detect faces/features in an image when the image is uploaded. The detected features are stored internally as a focal point in the focal_point_{x, y, width, height} fields on the Image model. These fields are used by the fill image filter when an image is rendered in a template to crop the image.

Installation

Three components are required to get this working with Wagtail:

	OpenCV itself

	various system-level components that OpenCV relies on

	a Python interface to OpenCV, exposed as cv2

Installation options

There is more than one way to install these components, but in each case you will need to test that both OpenCV itself and the Python interface have been correctly installed.

Install opencv-python

opencv-python [https://pypi.org/project/opencv-python/] is available on PyPI.
It includes a Python interface to OpenCV, as well as the statically-built OpenCV binaries themselves.

To install:

$ pip install opencv-python

Depending on what else is installed on your system, this may be all that is required. On lighter-weight Linux systems, you may need to identify and install missing system libraries (for example, a slim version of Debian Stretch requires libsm6 libxrender1 libxext6 to be installed with apt).

Install a system-level package

A system-level package can take care of all of the required components. Check what is available for your operating system. For example, python-opencv [https://packages.debian.org/stretch/python-opencv] is available for Debian; it installs OpenCV itself, and sets up Python bindings.

However, it may make incorrect assumptions about how you’re using Python (for example, which version you’re using) - test as described below.

Testing the installation

Test the installation:

python3
>>> import cv2

An error such as:

ImportError: libSM.so.6: cannot open shared object file: No such file or directory

indicates that a required system library (in this case libsm6) has not been installed.

On the other hand,

ModuleNotFoundError: No module named 'cv2'

means that the Python components have not been set up correctly in your Python environment.

If you don’t get an import error, installation has probably been successful.

Switching on feature detection in Wagtail

Once OpenCV is installed, you need to set the WAGTAILIMAGES_FEATURE_DETECTION_ENABLED setting to True:

settings.py

WAGTAILIMAGES_FEATURE_DETECTION_ENABLED = True

Manually running feature detection

Feature detection runs when new images are uploaded in to Wagtail. If you already have images in your Wagtail site and would like to run feature detection on them, you will have to run it manually.

You can manually run feature detection on all images by running the following code in the Python shell:

from wagtail.images.models import Image

for image in Image.objects.all():
 if not image.has_focal_point():
 image.set_focal_point(image.get_suggested_focal_point())
 image.save()

Dynamic image serve view

In most cases, developers wanting to generate image renditions in Python should use the get_rendition()
method. See Generating renditions in Python.

If you need to be able to generate image versions for an external system such as a blog or mobile app,
Wagtail provides a view for dynamically generating renditions of images by calling a unique URL.

The view takes an image id, filter spec and security signature in the URL. If
these parameters are valid, it serves an image file matching that criteria.

Like the {% image %} tag, the rendition is generated on the first call and
subsequent calls are served from a cache.

Setup

Add an entry for the view into your URLs configuration:

from wagtail.images.views.serve import ServeView

urlpatterns = [
 ...

 url(r'^images/([^/]*)/(\d*)/([^/]*)/[^/]*$', ServeView.as_view(), name='wagtailimages_serve'),

 ...

 # Ensure that the wagtailimages_serve line appears above the default Wagtail page serving route
 url(r'', include(wagtail_urls)),
]

Usage

Image URL generator UI

When the dynamic serve view is enabled, an image URL generator in the admin
interface becomes available automatically. This can be accessed through the edit
page of any image by clicking the “URL generator” button on the right hand side.

This interface allows editors to generate URLs to cropped versions of the image.

Generating dynamic image URLs in Python

Dynamic image URLs can also be generated using Python code and served to a
client over an API or used directly in the template.

One advantage of using dynamic image URLs in the template is that they do not
block the initial response while rendering like the {% image %} tag does.

The generate_image_url function in wagtail.images.views.serve is a convenience
method to generate a dynamic image URL.

Here’s an example of this being used in a view:

def display_image(request, image_id):
 image = get_object_or_404(Image, id=image_id)

 return render(request, 'display_image.html', {
 'image_url': generate_image_url(image, 'fill-100x100')
 })

Image operations can be chained by joining them with a | character:

return render(request, 'display_image.html', {
 'image_url': generate_image_url(image, 'fill-100x100|jpegquality-40')
})

In your templates:

{% load wagtailimages_tags %}
...

<!-- Get the url for the image scaled to a width of 400 pixels: -->
{% image_url page.photo "width-400" %}

<!-- Again, but this time as a square thumbnail: -->
{% image_url page.photo "fill-100x100|jpegquality-40" %}

<!-- This time using our custom image serve view: -->
{% image_url page.photo "width-400" "mycustomview_serve" %}

You can pass an optional view name that will be used to serve the image through. The default is wagtailimages_serve

Advanced configuration

Making the view redirect instead of serve

By default, the view will serve the image file directly. This behaviour can be
changed to a 301 redirect instead which may be useful if you host your images
externally.

To enable this, pass action='redirect' into the ServeView.as_view()
method in your urls configuration:

from wagtail.images.views.serve import ServeView

urlpatterns = [
 ...

 url(r'^images/([^/]*)/(\d*)/([^/]*)/[^/]*$', ServeView.as_view(action='redirect'), name='wagtailimages_serve'),
]

Integration with django-sendfile

django-sendfile [https://github.com/johnsensible/django-sendfile] offloads the job of transferring the image data to the web
server instead of serving it directly from the Django application. This could
greatly reduce server load in situations where your site has many images being
downloaded but you’re unable to use a Caching proxy or a CDN.

You firstly need to install and configure django-sendfile and configure your
web server to use it. If you haven’t done this already, please refer to the
installation docs [https://github.com/johnsensible/django-sendfile#django-sendfile].

To serve images with django-sendfile, you can use the SendFileView class.
This view can be used out of the box:

from wagtail.images.views.serve import SendFileView

urlpatterns = [
 ...

 url(r'^images/([^/]*)/(\d*)/([^/]*)/[^/]*$', SendFileView.as_view(), name='wagtailimages_serve'),
]

You can customise it to override the backend defined in the SENDFILE_BACKEND
setting:

from wagtail.images.views.serve import SendFileView
from project.sendfile_backends import MyCustomBackend

class MySendFileView(SendFileView):
 backend = MyCustomBackend

You can also customise it to serve private files. For example, if the only need
is to be authenticated (e.g. for Django >= 1.9):

from django.contrib.auth.mixins import LoginRequiredMixin
from wagtail.images.views.serve import SendFileView

class PrivateSendFileView(LoginRequiredMixin, SendFileView):
 raise_exception = True

Documents

	Custom document model
	Referring to the document model

Custom document model

An alternate Document model can be used to add custom behaviour and
additional fields.

You need to complete the following steps in your project to do this:

	Create a new document model that inherits from
wagtail.documents.models.AbstractDocument. This is where you would
add additional fields.

	Point WAGTAILDOCS_DOCUMENT_MODEL to the new model.

Here’s an example:

models.py
from wagtail.documents.models import Document, AbstractDocument

class CustomDocument(AbstractDocument):
 # Custom field example:
 source = models.CharField(
 max_length=255,
 # This must be set to allow Wagtail to create a document instance
 # on upload.
 blank=True,
 null=True
)

 admin_form_fields = Document.admin_form_fields + (
 # Add all custom fields names to make them appear in the form:
 'source',
)

Note

Fields defined on a custom document model must either be set as non-required
(blank=True), or specify a default value. This is because uploading the
document and entering custom data happens as two separate actions. Wagtail
needs to be able to create a document record immediately on upload.

Then in your settings module:

Ensure that you replace app_label with the app you placed your custom
model in.
WAGTAILDOCS_DOCUMENT_MODEL = 'app_label.CustomDocument'

Migrating from the builtin document model

When changing an existing site to use a custom document model, no documents
will be copied to the new model automatically. Copying old documents to the
new model would need to be done manually with a
data migration [https://docs.djangoproject.com/en/stable/topics/migrations/#data-migrations].

Any templates that reference the builtin document model will still continue
to work as before.

Referring to the document model

	
wagtail.documents.get_document_model()

	Get the document model from the WAGTAILDOCS_DOCUMENT_MODEL setting.
Defauts to the standard Document model
if no custom model is defined.

	
wagtail.documents.get_document_model_string()

	Get the dotted app.Model name for the document model as a string.
Useful for developers making Wagtail plugins that need to refer to the
document model, such as in foreign keys, but the model itself is not required.

Embedded content

Wagtail supports generating embed code from URLs to content on external
providers such as Youtube or Twitter. By default, Wagtail will fetch the embed
code directly from the relevant provider’s site using the oEmbed protocol.

Wagtail has a built-in list of the most common providers and this list can be
changed with a setting. Wagtail also supports
fetching embed code using Embedly and custom embed finders.

Embedding content on your site

Wagtail’s embeds module should work straight out of the box for most providers.
You can use any of the following methods to call the module:

Rich text

Wagtail’s default rich text editor has a “media” icon that allows embeds to be
placed into rich text. You don’t have to do anything to enable this; just make
sure the rich text field’s content is being passed through the |richtext
filter in the template as this is what calls the embeds module to fetch and
nest the embed code.

EmbedBlock StreamField block type

The EmbedBlock block type allows embeds
to be placed into a StreamField.

For example:

from wagtail.embeds.blocks import EmbedBlock

class MyStreamField(blocks.StreamBlock):
 ...

 embed = EmbedBlock()

{% embed %} tag

Syntax: {% embed <url> [max_width=<max width>] %}

You can nest embeds into a template by passing the URL and an optional
max_width argument to the {% embed %} tag.

The max_width argument is sent to the provider when fetching the embed code.

{% load wagtailembeds_tags %}

{# Embed a YouTube video #}
{% embed 'https://www.youtube.com/watch?v=SJXMTtvCxRo' %}

{# This tag can also take the URL from a variable #}
{% embed page.video_url %}

From Python

You can also call the internal get_embed function that takes a URL string
and returns an Embed object (see model documentation below). This also
takes a max_width keyword argument that is sent to the provider when
fetching the embed code.

from wagtail.embeds.embeds import get_embed
from wagtail.embeds.exceptions import EmbedException

try:
 embed = get_embed('https://www.youtube.com/watch?v=SJXMTtvCxRo')

 print(embed.html)
except EmbedException:
 # Cannot find embed
 pass

Configuring embed “finders”

Embed finders are the modules within Wagtail that are responsible for producing
embed code from a URL.

Embed finders are configured using the WAGTAILEMBEDS_FINDERS setting. This
is a list of finder configurations that are each run in order until one of them
successfully returns an embed:

The default configuration is:

WAGTAILEMBEDS_FINDERS = [
 {
 'class': 'wagtail.embeds.finders.oembed'
 }
]

oEmbed (default)

The default embed finder fetches the embed code directly from the content
provider using the oEmbed protocol. Wagtail has a built-in list of providers
which are all enabled by default. You can find that provider list at the
following link:

https://github.com/wagtail/wagtail/blob/master/wagtail/embeds/oembed_providers.py

Customising the provider list

You can limit which providers may be used by specifying the list of providers
in the finder configuration.

For example, this configuration will only allow content to be nested from Vimeo
and Youtube. It also adds a custom provider:

from wagtail.embeds.oembed_providers import youtube, vimeo

Add a custom provider
Your custom provider must support oEmbed for this to work. You should be
able to find these details in the provider's documentation.
- 'endpoint' is the URL of the oEmbed endpoint that Wagtail will call
- 'urls' specifies which patterns
my_custom_provider = {
 'endpoint': 'https://customvideosite.com/oembed',
 'urls': [
 '^http(?:s)?://(?:www\\.)?customvideosite\\.com/[^#?/]+/videos/.+$',
]
}

WAGTAILEMBEDS_FINDERS = [
 {
 'class': 'wagtail.embeds.finders.oembed',
 'providers': [youtube, vimeo, my_custom_provider],
 }
]

Customising an individual provider

Multiple finders can be chained together. This can be used for customising the
configuration for one provider without affecting the others.

For example, this is how you can instruct Youtube to return videos in HTTPS
(which must be done explicitly for YouTube):

from wagtail.embeds.oembed_providers import youtube

WAGTAILEMBEDS_FINDERS = [
 # Fetches YouTube videos but puts ``?scheme=https`` in the GET parameters
 # when calling YouTube's oEmbed endpoint
 {
 'class': 'wagtail.embeds.finders.oembed',
 'providers': [youtube],
 'options': {'scheme': 'https'}
 },

 # Handles all other oEmbed providers the default way
 {
 'class': 'wagtail.embeds.finders.oembed',
 }
]

How Wagtail uses multiple finders

If multiple providers can handle a URL (for example, a YouTube video was
requested using the configuration above), the topmost finder is chosen to
perform the request.

Wagtail will not try to run any other finder, even if the chosen one didn’t
return an embed.

Embed.ly

Embed.ly [https://embed.ly] is a paid-for service that can also provide
embeds for sites that do not implement the oEmbed protocol.

They also provide some helpful features such as giving embeds a consistent look
and a common video playback API which is useful if your site allows videos to
be hosted on different providers and you need to implement custom controls for
them.

Wagtail has built in support for fetching embeds from Embed.ly. To use it,
first pip install the Embedly python package [https://pypi.org/project/Embedly/].

Now add an embed finder to your WAGTAILEMBEDS_FINDERS setting that uses the
wagtail.embeds.finders.oembed class and pass it your API key:

WAGTAILEMBEDS_FINDERS = [
 {
 'class': 'wagtail.embeds.finders.embedly',
 'key': 'YOUR EMBED.LY KEY HERE'
 }
]

Custom embed finder classes

For complete control, you can create a custom finder class.

Here’s a stub finder class that could be used as a skeleton; please read the
docstrings for details of what each method does:

from wagtail.embeds.finders.base import EmbedFinder

class ExampleFinder(EmbedFinder):
 def __init__(self, **options):
 pass

 def accept(self, url):
 """
 Returns True if this finder knows how to fetch an embed for the URL.

 This should not have any side effects (no requests to external servers)
 """
 pass

 def find_embed(self, url, max_width=None):
 """
 Takes a URL and max width and returns a dictionary of information about the
 content to be used for embedding it on the site.

 This is the part that may make requests to external APIs.
 """
 # TODO: Perform the request

 return {
 'title': "Title of the content",
 'author_name': "Author name",
 'provider_name': "Provider name (eg. YouTube, Vimeo, etc)",
 'type': "Either 'photo', 'video', 'link' or 'rich'",
 'thumbnail_url': "URL to thumbnail image",
 'width': width_in_pixels,
 'height': height_in_pixels,
 'html': "<h2>The Embed HTML</h2>",
 }

Once you’ve implemented all of those methods, you just need to add it to your
WAGTAILEMBEDS_FINDERS setting:

WAGTAILEMBEDS_FINDERS = [
 {
 'class': 'path.to.your.finder.class.here',
 # Any other options will be passed as kwargs to the __init__ method
 }
]

The Embed model

	
class wagtail.embeds.models.Embed

	Embeds are fetched only once and stored in the database so subsequent requests
for an individual embed do not hit the embed finders again.

	
url

	(text)

The URL of the original content of this embed.

	
max_width

	(integer, nullable)

The max width that was requested.

	
type

	(text)

The type of the embed. This can be either ‘video’, ‘photo’, ‘link’ or ‘rich’.

	
html

	(text)

The HTML content of the embed that should be placed on the page

	
title

	(text)

The title of the content that is being embedded.

	
author_name

	(text)

The author name of the content that is being embedded.

	
provider_name

	(text)

The provider name of the content that is being embedded.

For example: YouTube, Vimeo

	
thumbnail_url

	(text)

a URL to a thumbnail image of the content that is being embedded.

	
width

	(integer, nullable)

The width of the embed (images and videos only).

	
height

	(integer, nullable)

The height of the embed (images and videos only).

	
last_updated

	(datetime)

The Date/time when this embed was last fetched.

Deleting embeds

As long as your embeds configuration is not broken, deleting items in the
Embed model should be perfectly safe to do. Wagtail will automatically
repopulate the records that are being used on the site.

You may want to do this if you’ve changed from oEmbed to Embedly or vice-versa
as the embed code they generate may be slightly different and lead to
inconsistency on your site.

How to add Wagtail into an existing Django project

To install Wagtail completely from scratch, create a new Django project and an app within that project. For instructions on these tasks, see Writing your first Django app [https://docs.djangoproject.com/en/stable/intro/tutorial01/]. Your project directory will look like the following:

myproject/
 myproject/
 __init__.py
 settings.py
 urls.py
 wsgi.py
 myapp/
 __init__.py
 models.py
 tests.py
 admin.py
 views.py
 manage.py

From your app directory, you can safely remove admin.py and views.py, since Wagtail will provide this functionality for your models. Configuring Django to load Wagtail involves adding modules and variables to settings.py and URL configuration to urls.py. For a more complete view of what’s defined in these files, see Django Settings [https://docs.djangoproject.com/en/stable/topics/settings/] and Django URL Dispatcher [https://docs.djangoproject.com/en/stable/topics/http/urls/].

What follows is a settings reference which skips many boilerplate Django settings. If you just want to get your Wagtail install up quickly without fussing with settings at the moment, see Ready to Use Example Configuration Files.

Middleware (settings.py)

MIDDLEWARE = [
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
 'django.middleware.security.SecurityMiddleware',

 'wagtail.core.middleware.SiteMiddleware',

 'wagtail.contrib.redirects.middleware.RedirectMiddleware',
]

Wagtail requires several common Django middleware modules to work and cover basic security. Wagtail provides its own middleware to cover these tasks:

	SiteMiddleware

	Wagtail routes pre-defined hosts to pages within the Wagtail tree using this middleware.

	RedirectMiddleware

	Wagtail provides a simple interface for adding arbitrary redirects to your site and this module makes it happen.

Apps (settings.py)

INSTALLED_APPS = [

 'myapp', # your own app

 'wagtail.contrib.forms',
 'wagtail.contrib.redirects',
 'wagtail.embeds',
 'wagtail.sites',
 'wagtail.users',
 'wagtail.snippets',
 'wagtail.documents',
 'wagtail.images',
 'wagtail.search',
 'wagtail.admin',
 'wagtail.core',

 'taggit',
 'modelcluster',

 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

Wagtail requires several Django app modules, third-party apps, and defines several apps of its own. Wagtail was built to be modular, so many Wagtail apps can be omitted to suit your needs. Your own app (here myapp) is where you define your models, templates, static assets, template tags, and other custom functionality for your site.

Wagtail Apps

	wagtailcore

	The core functionality of Wagtail, such as the Page class, the Wagtail tree, and model fields.

	wagtailadmin

	The administration interface for Wagtail, including page edit handlers.

	wagtaildocs

	The Wagtail document content type.

	wagtailsnippets

	Editing interface for non-Page models and objects. See Snippets.

	wagtailusers

	User editing interface.

	wagtailimages

	The Wagtail image content type.

	wagtailembeds

	Module governing oEmbed and Embedly content in Wagtail rich text fields. See Inserting videos into body content.

	wagtailsearch

	Search framework for Page content. See Search.

	wagtailredirects

	Admin interface for creating arbitrary redirects on your site.

	wagtailforms

	Models for creating forms on your pages and viewing submissions. See Form builder.

Third-Party Apps

	taggit

	Tagging framework for Django. This is used internally within Wagtail for image and document tagging and is available for your own models as well. See Tagging for a Wagtail model recipe or the Taggit Documentation [https://django-taggit.readthedocs.org/en/latest/index.html].

	modelcluster

	Extension of Django ForeignKey relation functionality, which is used in Wagtail pages for on-the-fly related object creation. For more information, see Inline Panels and Model Clusters or the django-modelcluster github project page [https://github.com/torchbox/django-modelcluster].

URL Patterns

from django.contrib import admin

from wagtail.core import urls as wagtail_urls
from wagtail.admin import urls as wagtailadmin_urls
from wagtail.documents import urls as wagtaildocs_urls

urlpatterns = [
 re_path(r'^django-admin/', include(admin.site.urls)),

 re_path(r'^admin/', include(wagtailadmin_urls)),
 re_path(r'^documents/', include(wagtaildocs_urls)),

 # Optional URL for including your own vanilla Django urls/views
 re_path(r'', include('myapp.urls')),

 # For anything not caught by a more specific rule above, hand over to
 # Wagtail's serving mechanism
 re_path(r'', include(wagtail_urls)),
]

This block of code for your project’s urls.py does a few things:

	Load the vanilla Django admin interface to /django-admin/

	Load the Wagtail admin and its various apps

	Dispatch any vanilla Django apps you’re using other than Wagtail which require their own URL configuration (this is optional, since Wagtail might be all you need)

	Lets Wagtail handle any further URL dispatching.

That’s not everything you might want to include in your project’s URL configuration, but it’s what’s necessary for Wagtail to flourish.

Ready to Use Example Configuration Files

These two files should reside in your project directory (myproject/myproject/).

settings.py

import os

PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
BASE_DIR = os.path.dirname(PROJECT_DIR)

DEBUG = True

Application definition

INSTALLED_APPS = [
 'myapp',

 'wagtail.contrib.forms',
 'wagtail.contrib.redirects',
 'wagtail.embeds',
 'wagtail.sites',
 'wagtail.users',
 'wagtail.snippets',
 'wagtail.documents',
 'wagtail.images',
 'wagtail.search',
 'wagtail.admin',
 'wagtail.core',

 'taggit',
 'modelcluster',

 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

MIDDLEWARE = [
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
 'django.middleware.security.SecurityMiddleware',

 'wagtail.core.middleware.SiteMiddleware',
 'wagtail.contrib.redirects.middleware.RedirectMiddleware',
]

ROOT_URLCONF = 'myproject.urls'

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [
 os.path.join(PROJECT_DIR, 'templates'),
],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

WSGI_APPLICATION = 'myproject.wsgi.application'

Database

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': 'myprojectdb',
 'USER': 'postgres',
 'PASSWORD': '',
 'HOST': '', # Set to empty string for localhost.
 'PORT': '', # Set to empty string for default.
 'CONN_MAX_AGE': 600, # number of seconds database connections should persist for
 }
}

Internationalization

LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True

Static files (CSS, JavaScript, Images)

STATICFILES_FINDERS = [
 'django.contrib.staticfiles.finders.FileSystemFinder',
 'django.contrib.staticfiles.finders.AppDirectoriesFinder',
]

STATICFILES_DIRS = [
 os.path.join(PROJECT_DIR, 'static'),
]

STATIC_ROOT = os.path.join(BASE_DIR, 'static')
STATIC_URL = '/static/'

MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
MEDIA_URL = '/media/'

ADMINS = [
 # ('Your Name', 'your_email@example.com'),
]
MANAGERS = ADMINS

Default to dummy email backend. Configure dev/production/local backend
as per https://docs.djangoproject.com/en/stable/topics/email/#email-backends
EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend'

Hosts/domain names that are valid for this site; required if DEBUG is False
ALLOWED_HOSTS = []

Make this unique, and don't share it with anybody.
SECRET_KEY = 'change-me'

EMAIL_SUBJECT_PREFIX = '[Wagtail] '

INTERNAL_IPS = ('127.0.0.1', '10.0.2.2')

A sample logging configuration. The only tangible logging
performed by this configuration is to send an email to
the site admins on every HTTP 500 error when DEBUG=False.
See https://docs.djangoproject.com/en/stable/topics/logging for
more details on how to customize your logging configuration.
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'filters': {
 'require_debug_false': {
 '()': 'django.utils.log.RequireDebugFalse'
 }
 },
 'handlers': {
 'mail_admins': {
 'level': 'ERROR',
 'filters': ['require_debug_false'],
 'class': 'django.utils.log.AdminEmailHandler'
 }
 },
 'loggers': {
 'django.request': {
 'handlers': ['mail_admins'],
 'level': 'ERROR',
 'propagate': True,
 },
 }
}

WAGTAIL SETTINGS

This is the human-readable name of your Wagtail install
which welcomes users upon login to the Wagtail admin.
WAGTAIL_SITE_NAME = 'My Project'

Override the search results template for wagtailsearch
WAGTAILSEARCH_RESULTS_TEMPLATE = 'myapp/search_results.html'
WAGTAILSEARCH_RESULTS_TEMPLATE_AJAX = 'myapp/includes/search_listing.html'

Replace the search backend
#WAGTAILSEARCH_BACKENDS = {
'default': {
'BACKEND': 'wagtail.search.backends.elasticsearch2',
'INDEX': 'myapp'
}
#}

Wagtail email notifications from address
WAGTAILADMIN_NOTIFICATION_FROM_EMAIL = 'wagtail@myhost.io'

Wagtail email notification format
WAGTAILADMIN_NOTIFICATION_USE_HTML = True

Reverse the default case-sensitive handling of tags
TAGGIT_CASE_INSENSITIVE = True

urls.py

from django.conf.urls import include, re_path
from django.conf.urls.static import static
from django.views.generic.base import RedirectView
from django.contrib import admin
from django.conf import settings
import os.path

from wagtail.core import urls as wagtail_urls
from wagtail.admin import urls as wagtailadmin_urls
from wagtail.documents import urls as wagtaildocs_urls

urlpatterns = [
 re_path(r'^django-admin/', include(admin.site.urls)),

 re_path(r'^admin/', include(wagtailadmin_urls)),
 re_path(r'^documents/', include(wagtaildocs_urls)),

 # For anything not caught by a more specific rule above, hand over to
 # Wagtail's serving mechanism
 re_path(r'', include(wagtail_urls)),
]

if settings.DEBUG:
 from django.contrib.staticfiles.urls import staticfiles_urlpatterns

 urlpatterns += staticfiles_urlpatterns() # tell gunicorn where static files are in dev mode
 urlpatterns += static(settings.MEDIA_URL + 'images/', document_root=os.path.join(settings.MEDIA_ROOT, 'images'))
 urlpatterns += [
 re_path(r'^favicon\.ico$', RedirectView.as_view(url=settings.STATIC_URL + 'myapp/images/favicon.ico'))
]

Deploying Wagtail

On your server

Wagtail is straightforward to deploy on modern Linux-based distributions, but see the section on performance for the non-Python services we recommend.

Our current preferences are for Nginx, Gunicorn and supervisor on Debian, but Wagtail should run with any of the combinations detailed in Django’s deployment documentation [https://docs.djangoproject.com/en/stable/howto/deployment/].

On Divio Cloud

Divio Cloud [https://divio.com/] is a Dockerised cloud hosting platform for Python/Django that allows you to launch and deploy Wagtail projects in minutes. With a free account, you can create a Wagtail project. Choose from a:

	site based on the Wagtail Bakery project [https://divio.com/wagtail], or

	brand new Wagtail project [https://control.divio.com/control/project/create] (see the how to get started notes [https://support.divio.com/project-types/wagtail/get-started-with-wagtail-on-divio-cloud]).

Divio Cloud also hosts a live Wagtail Bakery demo [https://divio.com/wagtail] (no account required).

On PythonAnywhere

PythonAnywhere [https://www.pythonanywhere.com/] is a Platform-as-a-Service (PaaS) focused on Python hosting and development. It allows developers to quickly develop, host, and scale applications in a cloud environment. Starting with a free plan they also provide MySQL and PostgreSQL databases as well as very flexible and affordable paid plans, so there’s all you need to host a Wagtail site. To get quickly up and running you may use the wagtail-pythonanywhere-quickstart [https://github.com/texperience/wagtail-pythonanywhere-quickstart].

On other PAASs and IAASs

We know of Wagtail sites running on Heroku [https://spapas.github.io/2014/02/13/wagtail-tutorial/], Digital Ocean and elsewhere. If you have successfully installed Wagtail on your platform or infrastructure, please contribute your notes to this documentation!

Deployment tips

Static files

As with all Django projects, static files are not served by the Django application server in production (i.e. outside of the manage.py runserver command); these need to be handled separately at the web server level. See Django’s documentation on deploying static files [https://docs.djangoproject.com/en/stable/howto/static-files/deployment/].

The JavaScript and CSS files used by the Wagtail admin frequently change between releases of Wagtail - it’s important to avoid serving outdated versions of these files due to browser or server-side caching, as this can cause hard-to-diagnose issues. We recommend enabling ManifestStaticFilesStorage [https://docs.djangoproject.com/en/stable/ref/contrib/staticfiles/#django.contrib.staticfiles.storage.ManifestStaticFilesStorage] in the STATICFILES_STORAGE setting - this ensures that different versions of files are assigned distinct URLs.

Cloud storage

Wagtail follows Django’s conventions for managing uploaded files [https://docs.djangoproject.com/en/stable/topics/files/], and can be configured to store uploaded images and documents on a cloud storage service such as Amazon S3; this is done through the DEFAULT_FILE_STORAGE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FILE_STORAGE] setting in conjunction with an add-on package such as django-storages [https://django-storages.readthedocs.io/]. Be aware that setting up remote storage will not entirely offload file handling tasks from the application server - some Wagtail functionality requires files to be read back by the application server. In particular, documents are served through a Django view in order to enforce permission checks, and original image files need to be read back whenever a new resized rendition is created.

Note that the django-storages Amazon S3 backends (storages.backends.s3boto.S3BotoStorage and storages.backends.s3boto3.S3Boto3Storage) do not correctly handle duplicate filenames in their default configuration. When using these backends, AWS_S3_FILE_OVERWRITE must be set to False.

If you are also serving Wagtail’s static files from remote storage (using Django’s STATICFILES_STORAGE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-STATICFILES_STORAGE] setting), you’ll need to ensure that it is configured to serve CORS HTTP headers [https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS], as current browsers will reject remotely-hosted font files that lack a valid header. For Amazon S3, refer to the documentation Setting Bucket and Object Access Permissions [https://docs.aws.amazon.com/AmazonS3/latest/user-guide/set-permissions.html], or (for the storages.backends.s3boto.S3BotoStorage backend only) add the following to your Django settings:

AWS_HEADERS = {
 'Access-Control-Allow-Origin': '*'
}

For other storage services, refer to your provider’s documentation, or the documentation for the Django storage backend library you’re using.

Performance

Wagtail is designed for speed, both in the editor interface and on the front-end, but if you want even better performance or you need to handle very high volumes of traffic, here are some tips on eking out the most from your installation.

Editor interface

We have tried to minimise external dependencies for a working installation of Wagtail, in order to make it as simple as possible to get going. However, a number of default settings can be configured for better performance:

Cache

We recommend Redis [https://redis.io/] as a fast, persistent cache. Install Redis through your package manager (on Debian or Ubuntu: sudo apt-get install redis-server), add django-redis to your requirements.txt, and enable it as a cache backend:

CACHES = {
 'default': {
 'BACKEND': 'django_redis.cache.RedisCache',
 'LOCATION': 'redis://127.0.0.1:6379/dbname',
 # for django-redis < 3.8.0, use:
 # 'LOCATION': '127.0.0.1:6379',
 'OPTIONS': {
 'CLIENT_CLASS': 'django_redis.client.DefaultClient',
 }
 }
}

Search

Wagtail has strong support for Elasticsearch [https://www.elastic.co] - both in the editor interface and for users of your site - but can fall back to a database search if Elasticsearch isn’t present. Elasticsearch is faster and more powerful than the Django ORM for text search, so we recommend installing it or using a hosted service like Searchly [http://www.searchly.com/].

For details on configuring Wagtail for Elasticsearch, see Elasticsearch Backend.

Database

Wagtail is tested on PostgreSQL, SQLite and MySQL. It should work on some third-party database backends as well (Microsoft SQL Server is known to work but currently untested). We recommend PostgreSQL for production use.

Templates

The overhead from reading and compiling templates can add up. In some cases a significant performance improvement can be gained by using Django's cached template loader [https://docs.djangoproject.com/en/stable/ref/templates/api/#django.template.loaders.cached.Loader]:

TEMPLATES = [{
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [os.path.join(BASE_DIR, 'templates')],
 'OPTIONS': {
 'loaders': [
 ('django.template.loaders.cached.Loader', [
 'django.template.loaders.filesystem.Loader',
 'django.template.loaders.app_directories.Loader',
]),
],
 },
}]

There is a caveat associated with this loader though. Changes to a template file will not be picked up once it is cached. This means that this loader should not be enabled during development.

Public users

Caching proxy

To support high volumes of traffic with excellent response times, we recommend a caching proxy. Both Varnish [https://varnish-cache.org/] and Squid [http://www.squid-cache.org/] have been tested in production. Hosted proxies like Cloudflare [https://www.cloudflare.com/] should also work well.

Wagtail supports automatic cache invalidation for Varnish/Squid. See Frontend cache invalidator for more information.

Private pages

Users with publish permission on a page can set it to be private by clicking the ‘Privacy’ control in the top right corner of the page explorer or editing interface. This sets a restriction on who is allowed to view the page and its sub-pages. Several different kinds of restriction are available:

	Accessible to logged-in users: The user must log in to view the page. All user accounts are granted access, regardless of permission level.

	Accessible with the following password: The user must enter the given password to view the page. This is appropriate for situations where you want to share a page with a trusted group of people, but giving them individual user accounts would be overkill. The same password is shared between all users, and this works independently of any user accounts that exist on the site.

	Accessible to users in specific groups: The user must be logged in, and a member of one or more of the specified groups, in order to view the page.

Similarly, documents can be made private by placing them in a collection with appropriate privacy settings (see Image / document permissions).

Private pages and documents work on Wagtail out of the box - the site implementer does not need to do anything to set them up. However, the default “log in” and “password required” forms are only bare-bones HTML pages, and site implementers may wish to replace them with a page customised to their site design.

Setting up a login page

The basic login page can be customised by setting WAGTAIL_FRONTEND_LOGIN_TEMPLATE to the path of a template you wish to use:

WAGTAIL_FRONTEND_LOGIN_TEMPLATE = 'myapp/login.html'

Wagtail uses Django’s standard django.contrib.auth.views.LoginView view here, and so the context variables available on the template are as detailed in Django's login view documentation [https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.LoginView].

If the stock Django login view is not suitable - for example, you wish to use an external authentication system, or you are integrating Wagtail into an existing Django site that already has a working login view - you can specify the URL of the login view via the WAGTAIL_FRONTEND_LOGIN_URL setting:

WAGTAIL_FRONTEND_LOGIN_URL = '/accounts/login/'

To integrate Wagtail into a Django site with an existing login mechanism, setting WAGTAIL_FRONTEND_LOGIN_URL = LOGIN_URL will usually be sufficient.

Setting up a global “password required” page

By setting PASSWORD_REQUIRED_TEMPLATE in your Django settings file, you can specify the path of a template which will be used for all “password required” forms on the site (except for page types that specifically override it - see below):

PASSWORD_REQUIRED_TEMPLATE = 'myapp/password_required.html'

This template will receive the same set of context variables that the blocked page would pass to its own template via get_context() - including page to refer to the page object itself - plus the following additional variables (which override any of the page’s own context variables of the same name):

	form - A Django form object for the password prompt; this will contain a field named password as its only visible field. A number of hidden fields may also be present, so the page must loop over form.hidden_fields if not using one of Django’s rendering helpers such as form.as_p.

	action_url - The URL that the password form should be submitted to, as a POST request.

A basic template suitable for use as PASSWORD_REQUIRED_TEMPLATE might look like this:

<!DOCTYPE HTML>
<html>
 <head>
 <title>Password required</title>
 </head>
 <body>
 <h1>Password required</h1>
 <p>You need a password to access this page.</p>
 <form action="{{ action_url }}" method="POST">
 {% csrf_token %}

 {{ form.non_field_errors }}

 <div>
 {{ form.password.errors }}
 {{ form.password.label_tag }}
 {{ form.password }}
 </div>

 {% for field in form.hidden_fields %}
 {{ field }}
 {% endfor %}
 <input type="submit" value="Continue" />
 </form>
 </body>
</html>

Password restrictions on documents use a separate template, specified through the setting DOCUMENT_PASSWORD_REQUIRED_TEMPLATE; this template also receives the context variables form and action_url as described above.

Setting a “password required” page for a specific page type

The attribute password_required_template can be defined on a page model to use a custom template for the “password required” view, for that page type only. For example, if a site had a page type for displaying embedded videos along with a description, it might choose to use a custom “password required” template that displays the video description as usual, but shows the password form in place of the video embed.

class VideoPage(Page):
 ...

 password_required_template = 'video/password_required.html'

Customising Wagtail

	Customising the editing interface
	Customising the tabbed interface

	Rich Text (HTML)

	Customising generated forms

	Rich text internals
	Data format

	The feature registry

	Rewrite handlers

	Registering rewrite handlers

	Editor widgets

	Editor plugins

	Format converters

	Extending the Draftail Editor
	Creating new inline styles

	Creating new blocks

	Creating new entities

	Integration of the Draftail widgets

	Extending the Hallo Editor
	Whitelisting rich text elements

	Customising admin templates
	Custom branding

	Specifying a site or page in the branding

	Extending the login form

	Extending client-side components

	Custom user models
	Custom user forms example

Customising the editing interface

Customising the tabbed interface

As standard, Wagtail organises panels for pages into three tabs: ‘Content’, ‘Promote’ and ‘Settings’. For snippets Wagtail puts all panels into one page. Depending on the requirements of your site, you may wish to customise this for specific page types or snippets - for example, adding an additional tab for sidebar content. This can be done by specifying an edit_handler attribute on the page or snippet model. For example:

from wagtail.admin.edit_handlers import TabbedInterface, ObjectList

class BlogPage(Page):
 # field definitions omitted

 content_panels = [
 FieldPanel('title', classname="full title"),
 FieldPanel('date'),
 FieldPanel('body', classname="full"),
]
 sidebar_content_panels = [
 SnippetChooserPanel('advert'),
 InlinePanel('related_links', label="Related links"),
]

 edit_handler = TabbedInterface([
 ObjectList(content_panels, heading='Content'),
 ObjectList(sidebar_content_panels, heading='Sidebar content'),
 ObjectList(Page.promote_panels, heading='Promote'),
 ObjectList(Page.settings_panels, heading='Settings', classname="settings"),
])

Rich Text (HTML)

Wagtail provides a general-purpose WYSIWYG editor for creating rich text content (HTML) and embedding media such as images, video, and documents. To include this in your models, use the RichTextField function when defining a model field:

from wagtail.core.fields import RichTextField
from wagtail.admin.edit_handlers import FieldPanel

class BookPage(Page):
 book_text = RichTextField()

 content_panels = Page.content_panels + [
 FieldPanel('body', classname="full"),
]

RichTextField inherits from Django’s basic TextField field, so you can pass any field parameters into RichTextField as if using a normal Django field. This field does not need a special panel and can be defined with FieldPanel.

However, template output from RichTextField is special and needs to be filtered in order to preserve embedded content. See Rich text (filter).

Limiting features in a rich text field

By default, the rich text editor provides users with a wide variety of options for text formatting and inserting embedded content such as images. However, we may wish to restrict a rich text field to a more limited set of features - for example:

	The field might be intended for a short text snippet, such as a summary to be pulled out on index pages, where embedded images or videos would be inappropriate;

	When page content is defined using StreamField, elements such as headings, images and videos are usually given their own block types, alongside a rich text block type used for ordinary paragraph text; in this case, allowing headings and images to also exist within the rich text content is redundant (and liable to result in inconsistent designs).

This can be achieved by passing a features keyword argument to RichTextField, with a list of identifiers for the features you wish to allow:

body = RichTextField(features=['h2', 'h3', 'bold', 'italic', 'link'])

The feature identifiers provided on a default Wagtail installation are as follows:

	h1, h2, h3, h4, h5, h6 - heading elements

	bold, italic - bold / italic text

	ol, ul - ordered / unordered lists

	hr - horizontal rules

	link - page, external and email links

	document-link - links to documents

	image - embedded images

	embed - embedded media (see Embedded content)

We have few additional feature identifiers as well. They are not enabled by default, but you can use them in your list of identifers. These are as follows:

	code - inline code

	superscript, subscript, strikethrough - text formatting

	blockquote - blockquote

The process for creating new features is described in the following pages:

	Rich text internals

	Extending the Draftail Editor

	Extending the Hallo Editor

Image Formats in the Rich Text Editor

On loading, Wagtail will search for any app with the file image_formats.py and execute the contents. This provides a way to customise the formatting options shown to the editor when inserting images in the RichTextField editor.

As an example, add a “thumbnail” format:

image_formats.py
from wagtail.images.formats import Format, register_image_format

register_image_format(Format('thumbnail', 'Thumbnail', 'richtext-image thumbnail', 'max-120x120'))

To begin, import the Format class, register_image_format function, and optionally unregister_image_format function. To register a new Format, call the register_image_format with the Format object as the argument. The Format class takes the following constructor arguments:

	name

	The unique key used to identify the format. To unregister this format, call unregister_image_format with this string as the only argument.

	label

	The label used in the chooser form when inserting the image into the RichTextField.

	classnames

	The string to assign to the class attribute of the generated tag.

Note

Any class names you provide must have CSS rules matching them written separately, as part of the front end CSS code. Specifying a classnames value of left will only ensure that class is output in the generated markup, it won’t cause the image to align itself left.

	filter_spec

	The string specification to create the image rendition. For more, see the Using images in templates.

To unregister, call unregister_image_format with the string of the name of the Format as the only argument.

Warning

Unregistering Format objects will cause errors viewing or editing pages that reference them.

Customising generated forms

	
class wagtail.admin.forms.WagtailAdminModelForm

	

	
class wagtail.admin.forms.WagtailAdminPageForm

	

Wagtail automatically generates forms using the panels configured on the model.
By default, this form subclasses WagtailAdminModelForm,
or WagtailAdminPageForm for pages.
A custom base form class can be configured by setting the base_form_class attribute on any model.
Custom forms for snippets must subclass WagtailAdminModelForm,
and custom forms for pages must subclass WagtailAdminPageForm.

This can be used to add non-model fields to the form, to automatically generate field content,
or to add custom validation logic for your models:

from django import forms
from django.db import models
import geocoder # not in Wagtail, for example only - https://geocoder.readthedocs.io/
from wagtail.admin.edit_handlers import FieldPanel
from wagtail.admin.forms import WagtailAdminPageForm
from wagtail.core.models import Page

class EventPageForm(WagtailAdminPageForm):
 address = forms.CharField()

 def clean(self):
 cleaned_data = super().clean()

 # Make sure that the event starts before it ends
 start_date = cleaned_data['start_date']
 end_date = cleaned_data['end_date']
 if start_date and end_date and start_date > end_date:
 self.add_error('end_date', 'The end date must be after the start date')

 return cleaned_data

 def save(self, commit=True):
 page = super().save(commit=False)

 # Update the duration field from the submitted dates
 page.duration = (page.end_date - page.start_date).days

 # Fetch the location by geocoding the address
 page.location = geocoder.arcgis(self.cleaned_data['address'])

 if commit:
 page.save()
 return page

class EventPage(Page):
 start_date = models.DateField()
 end_date = models.DateField()
 duration = models.IntegerField()
 location = models.CharField(max_length=255)

 content_panels = [
 FieldPanel('title'),
 FieldPanel('start_date'),
 FieldPanel('end_date'),
 FieldPanel('address'),
]
 base_form_class = EventPageForm

Wagtail will generate a new subclass of this form for the model,
adding any fields defined in panels or content_panels.
Any fields already defined on the model will not be overridden by these automatically added fields,
so the form field for a model field can be overridden by adding it to the custom form.

Rich text internals

At first glance, Wagtail’s rich text capabilities appear to give editors direct control over a block of HTML content. In reality, it’s necessary to give editors a representation of rich text content that is several steps removed from the final HTML output, for several reasons:

	The editor interface needs to filter out certain kinds of unwanted markup; this includes malicious scripting, font styles pasted from an external word processor, and elements which would break the validity or consistency of the site design (for example, pages will generally reserve the <h1> element for the page title, and so it would be inappropriate to allow users to insert their own additional <h1> elements through rich text).

	Rich text fields can specify a features argument to further restrict the elements permitted in the field - see Limiting features in a rich text field.

	Enforcing a subset of HTML helps to keep presentational markup out of the database, making the site more maintainable, and making it easier to repurpose site content (including, potentially, producing non-HTML output such as LaTeX [https://www.latex-project.org/]).

	Elements such as page links and images need to preserve metadata such as the page or image ID, which is not present in the final HTML representation.

This requires the rich text content to go through a number of validation and conversion steps; both between the editor interface and the version stored in the database, and from the database representation to the final rendered HTML.

For this reason, extending Wagtail’s rich text handling to support a new element is more involved than simply saying (for example) “enable the <blockquote> element”, since various components of Wagtail - both client and server-side - need to agree on how to handle that feature, including how it should be exposed in the editor interface, how it should be represented within the database, and (if appropriate) how it should be translated when rendered on the front-end.

The components involved in Wagtail’s rich text handling are described below.

Data format

Rich text data (as handled by RichTextField, and RichTextBlock within StreamField) is stored in the database in a format that is similar, but not identical, to HTML. For example, a link to a page might be stored as:

<p>Contact us for more information.</p>

Here, the linktype attribute identifies a rule that shall be used to rewrite the tag. When rendered on a template through the |richtext filter (see Rich text (filter)), this is converted into valid HTML:

<p>Contact us for more information.</p>

In the case of RichTextBlock, the block’s value is a RichText object which performs this conversion automatically when rendered as a string, so the |richtext filter is not necessary.

Likewise, an image inside rich text content might be stored as:

<embed embedtype="image" id="10" alt="A pied wagtail" format="left" />

which is converted into an img element when rendered:

Again, the embedtype attribute identifies a rule that shall be used to rewrite the tag. All tags other than and <embed embedtype="..." /> are left unchanged in the converted HTML.

A number of additional constraints apply to and <embed embedtype="..." /> tags, to allow the conversion to be performed efficiently via string replacement:

	The tag name and attributes must be lower-case

	Attribute values must be quoted with double-quotes

	embed elements must use XML self-closing tag syntax (i.e. end in /> instead of a closing </embed> tag)

	The only HTML entities permitted in attribute values are <, >, & and "

The feature registry

Any app within your project can define extensions to Wagtail’s rich text handling, such as new linktype and embedtype rules. An object known as the feature registry serves as a central source of truth about how rich text should behave. This object can be accessed through the register_rich_text_features hook, which is called on startup to gather all definitions relating to rich text:

my_app/wagtail_hooks.py

from wagtail.core import hooks

@hooks.register('register_rich_text_features')
def register_my_feature(features):
 # add new definitions to 'features' here

Rewrite handlers

Rewrite handlers are classes that know how to translate the content of rich text tags like and <embed embedtype="..." /> into front-end HTML. For example, the PageLinkHandler class knows how to convert the rich text tag into the HTML tag .

Rewrite handlers can also provide other useful information about rich text tags. For example, given an appropriate tag, PageLinkHandler can be used to extract which page is being referred to. This can be useful for downstream code that may want information about objects being referenced in rich text.

You can create custom rewrite handlers to support your own new linktype and embedtype tags. New handlers must be Python classes that inherit from either wagtail.core.richtext.LinkHandler or wagtail.core.richtext.EmbedHandler. Your new classes should override at least some of the following methods (listed here for LinkHandler, although EmbedHandler has an identical signature):

	
class LinkHandler

	
	
identifier

	Required. The identifier attribute is a string that indicates which rich text tags should be handled by this handler.

For example, PageLinkHandler.identifier is set to the string "page", indicating that any rich text tags with should be handled by it.

	
expand_db_attributes(attrs)

	Required. The expand_db_attributes method is expected to take a dictionary of attributes from a database rich text <a> tag (<embed> for EmbedHandler) and use it to generate valid frontend HTML.

For example, PageLinkHandler.expand_db_attributes might receive {'id': 123}, use it to retrieve the Wagtail page with ID 123, and render a link to its URL like .

	
get_model()

	Optional. The static get_model method only applies to those handlers that are used to render content related to Django models. This method allows handlers to expose the type of content that they know how to handle.

For example, PageLinkHandler.get_model returns the Wagtail class Page.

Handlers that aren’t related to Django models can leave this method undefined, and calling it will raise NotImplementedError.

	
get_instance(attrs)

	Optional. The static or classmethod get_instance method also only applies to those handlers that are used to render content related to Django models. This method is expected to take a dictionary of attributes from a database rich text <a> tag (<embed> for EmbedHandler) and use it to return the specific Django model instance being referred to.

For example, PageLinkHandler.get_instance might receive {'id': 123} and return the instance of the Wagtail Page class with ID 123.

If left undefined, a default implementation of this method will query the id model field on the class returned by get_model using the provided id attribute; this can be overriden in your own handlers should you want to use some other model field.

Below is an example custom rewrite handler that implements these methods to add support for rich text linking to user email addresses. It supports the conversion of rich text tags like to valid HTML like . This example assumes that equivalent front-end functionality has been added to allow users to insert these kinds of links into their rich text editor.

from django.contrib.auth import get_user_model
from wagtail.core.rich_text import LinkHandler

class UserLinkHandler(LinkHandler):
 identifier = 'user'

 @staticmethod
 def get_model():
 return get_user_model()

 @classmethod
 def get_instance(cls, attrs):
 model = cls.get_model()
 return model.objects.get(username=attrs['username'])

 @classmethod
 def expand_db_attributes(cls, attrs):
 user = cls.get_instance(attrs)
 return '' % user.email

Registering rewrite handlers

Rewrite handlers must also be registered with the feature registry via the register_rich_text_features hook. Independent methods for registering both link handlers and embed handlers are provided.

	
FeatureRegistry.register_link_type(handler)

	

This method allows you to register a custom handler deriving from wagtail.core.rich_text.LinkHandler, and adds it to the list of link handlers available during rich text conversion.

my_app/wagtail_hooks.py

from wagtail.core import hooks
from my_app.handlers import MyCustomLinkHandler

@hooks.register('register_rich_text_features')
def register_link_handler(features):
 features.register_link_type(MyCustomLinkHandler)

It is also possible to define link rewrite handlers for Wagtail’s built-in external and email links, even though they do not have a predefined linktype. For example, if you want external links to have a rel="nofollow" attribute for SEO purposes:

from django.utils.html import escape
from wagtail.core import hooks
from wagtail.core.rich_text import LinkHandler

class NoFollowExternalLinkHandler(LinkHandler):
 identifier = 'external'

 @classmethod
 def expand_db_attributes(cls, attrs):
 href = attrs["href"]
 return '' % escape(href)

@hooks.register('register_rich_text_features')
def register_external_link(features):
 features.register_link_type(NoFollowExternalLinkHandler)

Similarly you can use email linktype to add a custom rewrite handler for email links (e.g. to obfuscate emails in rich text).

	
FeatureRegistry.register_embed_type(handler)

	

This method allows you to register a custom handler deriving from wagtail.core.rich_text.EmbedHandler, and adds it to the list of embed handlers available during rich text conversion.

my_app/wagtail_hooks.py

from wagtail.core import hooks
from my_app.handlers import MyCustomEmbedHandler

@hooks.register('register_rich_text_features')
def register_embed_handler(features):
 features.register_embed_type(MyCustomEmbedHandler)

Editor widgets

The editor interface used on rich text fields can be configured with the WAGTAILADMIN_RICH_TEXT_EDITORS setting. Wagtail provides two editor implementations: wagtail.admin.rich_text.DraftailRichTextArea (the Draftail [https://www.draftail.org/] editor based on Draft.js [https://draftjs.org/]) and wagtail.admin.rich_text.HalloRichTextArea (deprecated, based on Hallo.js [http://hallojs.org/]).

It is possible to create your own rich text editor implementation. At minimum, a rich text editor is a Django Widget [https://docs.djangoproject.com/en/stable/ref/forms/widgets/#django.forms.Widget] subclass whose constructor accepts an options keyword argument (a dictionary of editor-specific configuration options sourced from the OPTIONS field in WAGTAILADMIN_RICH_TEXT_EDITORS), and which consumes and produces string data in the HTML-like format described above.

Typically, a rich text widget also receives a features list, passed from either RichTextField / RichTextBlock or the features option in WAGTAILADMIN_RICH_TEXT_EDITORS, which defines the features available in that instance of the editor (see Limiting features in a rich text field). To opt in to supporting features, set the attribute accepts_features = True on your widget class; the widget constructor will then receive the feature list as a keyword argument features.

There is a standard set of recognised feature identifiers as listed under Limiting features in a rich text field, but this is not a definitive list; feature identifiers are only defined by convention, and it is up to each editor widget to determine which features it will recognise, and adapt its behaviour accordingly. Individual editor widgets might implement fewer or more features than the default set, either as built-in functionality or through a plugin mechanism if the editor widget has one.

For example, a third-party Wagtail extension might introduce table as a new rich text feature, and provide implementations for the Draftail and Hallo editors (which both provide a plugin mechanism). In this case, the third-party extension will not be aware of your custom editor widget, and so the widget will not know how to handle the table feature identifier. Editor widgets should silently ignore any feature identifiers that they do not recognise.

The default_features attribute of the feature registry is a list of feature identifiers to be used whenever an explicit feature list has not been given in RichTextField / RichTextBlock or WAGTAILADMIN_RICH_TEXT_EDITORS. This list can be modified within the register_rich_text_features hook to make new features enabled by default, and retrieved by calling get_default_features().

@hooks.register('register_rich_text_features')
def make_h1_default(features):
 features.default_features.append('h1')

Outside of the register_rich_text_features hook - for example, inside a widget class - the feature registry can be imported as the object wagtail.core.rich_text.features. A possible starting point for a rich text editor with feature support would be:

from django.forms import widgets
from wagtail.core.rich_text import features

class CustomRichTextArea(widgets.TextArea):
 accepts_features = True

 def __init__(self, *args, **kwargs):
 self.options = kwargs.pop('options', None)

 self.features = kwargs.pop('features', None)
 if self.features is None:
 self.features = features.get_default_features()

 super().__init__(*args, **kwargs)

Editor plugins

	
FeatureRegistry.register_editor_plugin(editor_name, feature_name, plugin_definition)

	

Rich text editors often provide a plugin mechanism to allow extending the editor with new functionality. The register_editor_plugin method provides a standardised way for register_rich_text_features hooks to define plugins to be pulled in to the editor when a given rich text feature is enabled.

register_editor_plugin is passed an editor name (a string uniquely identifying the editor widget - Wagtail uses the identifiers draftail and hallo for its built-in editors), a feature identifier, and a plugin definition object. This object is specific to the editor widget and can be any arbitrary value, but will typically include a Django form media [https://docs.djangoproject.com/en/stable/topics/forms/media/] definition referencing the plugin’s JavaScript code - which will then be merged into the editor widget’s own media definition - along with any relevant configuration options to be passed when instantiating the editor.

	
FeatureRegistry.get_editor_plugin(editor_name, feature_name)

	

Within the editor widget, the plugin definition for a given feature can be retrieved via the get_editor_plugin method, passing the editor’s own identifier string and the feature identifier. This will return None if no matching plugin has been registered.

For details of the plugin formats for Wagtail’s built-in editors, see Extending the Draftail Editor and Extending the Hallo Editor.

Format converters

Editor widgets will often be unable to work directly with Wagtail’s rich text format, and require conversion to their own native format. For Draftail, this is a JSON-based format known as ContentState (see How Draft.js Represents Rich Text Data [https://medium.com/@rajaraodv/how-draft-js-represents-rich-text-data-eeabb5f25cf2]). Hallo.js and other editors based on HTML’s contentEditable mechanism require valid HTML, and so Wagtail uses a convention referred to as “editor HTML”, where the additional data required on link and embed elements is stored in data- attributes, for example: Contact us.

Wagtail provides two utility classes, wagtail.admin.rich_text.converters.contentstate.ContentstateConverter and wagtail.admin.rich_text.converters.editor_html.EditorHTMLConverter, to perform conversions between rich text format and the native editor formats. These classes are independent of any editor widget, and distinct from the rewriting process that happens when rendering rich text onto a template.

Both classes accept a features list as an argument to their constructor, and implement two methods, from_database_format(data) which converts Wagtail rich text data to the editor’s format, and to_database_format(data) which converts editor data to Wagtail rich text format.

As with editor plugins, the behaviour of a converter class can vary according to the feature list passed to it. In particular, it can apply whitelisting rules to ensure that the output only contains HTML elements corresponding to the currently active feature set. The feature registry provides a register_converter_rule method to allow register_rich_text_features hooks to define conversion rules that will be activated when a given feature is enabled.

	
FeatureRegistry.register_converter_rule(converter_name, feature_name, rule_definition)

	

register_editor_plugin is passed a converter name (a string uniquely identifying the converter class - Wagtail uses the identifiers contentstate and editorhtml), a feature identifier, and a rule definition object. This object is specific to the converter and can be any arbitrary value.

For details of the rule definition format for the contentstate and editorhtml converters, see Extending the Draftail Editor and Extending the Hallo Editor respectively.

	
FeatureRegistry.get_converter_rule(converter_name, feature_name)

	

Within a converter class, the rule definition for a given feature can be retrieved via the get_converter_rule method, passing the converter’s own identifier string and the feature identifier. This will return None if no matching rule has been registered.

Extending the Draftail Editor

Wagtail’s rich text editor is built with Draftail [https://www.draftail.org/], and its functionality can be extended through plugins.

Plugins come in three types:

	Inline styles – To format a portion of a line, eg. bold, italic, monospace.

	Blocks – To indicate the structure of the content, eg. blockquote, ol.

	Entities – To enter additional data/metadata, eg. link (with a URL), image (with a file).

All of these plugins are created with a similar baseline, which we can demonstrate with one of the simplest examples – a custom feature for an inline style of mark. Place the following in a wagtail_hooks.py file in any installed app:

import wagtail.admin.rich_text.editors.draftail.features as draftail_features
from wagtail.admin.rich_text.converters.html_to_contentstate import InlineStyleElementHandler
from wagtail.core import hooks

1. Use the register_rich_text_features hook.
@hooks.register('register_rich_text_features')
def register_mark_feature(features):
 """
 Registering the `mark` feature, which uses the `MARK` Draft.js inline style type,
 and is stored as HTML with a `<mark>` tag.
 """
 feature_name = 'mark'
 type_ = 'MARK'
 tag = 'mark'

 # 2. Configure how Draftail handles the feature in its toolbar.
 control = {
 'type': type_,
 'label': '☆',
 'description': 'Mark',
 # This isn’t even required – Draftail has predefined styles for MARK.
 # 'style': {'textDecoration': 'line-through'},
 }

 # 3. Call register_editor_plugin to register the configuration for Draftail.
 features.register_editor_plugin(
 'draftail', feature_name, draftail_features.InlineStyleFeature(control)
)

 # 4.configure the content transform from the DB to the editor and back.
 db_conversion = {
 'from_database_format': {tag: InlineStyleElementHandler(type_)},
 'to_database_format': {'style_map': {type_: tag}},
 }

 # 5. Call register_converter_rule to register the content transformation conversion.
 features.register_converter_rule('contentstate', feature_name, db_conversion)

 # 6. (optional) Add the feature to the default features list to make it available
 # on rich text fields that do not specify an explicit 'features' list
 features.default_features.append('mark')

These steps will always be the same for all Draftail plugins. The important parts are to:

	Consistently use the feature’s Draft.js type or Wagtail feature names where appropriate.

	Give enough information to Draftail so it knows how to make a button for the feature, and how to render it (more on this later).

	Configure the conversion to use the right HTML element (as they are stored in the DB).

For detailed configuration options, head over to the Draftail documentation [https://www.draftail.org/docs/formatting-options] to see all of the details. Here are some parts worth highlighting about controls:

	The type is the only mandatory piece of information.

	To display the control in the toolbar, combine icon, label and description.

	The controls’ icon can be a string to use an icon font with CSS classes, say 'icon': 'fas fa-user',. It can also be an array of strings, to use SVG paths, or SVG symbol references eg. 'icon': ['M100 100 H 900 V 900 H 100 Z'],. The paths need to be set for a 1024x1024 viewbox.

Creating new inline styles

In addition to the initial example, inline styles take a style property to define what CSS rules will be applied to text in the editor. Be sure to read the Draftail documentation [https://www.draftail.org/docs/formatting-options] on inline styles.

Finally, the DB to/from conversion uses an InlineStyleElementHandler to map from a given tag (<mark> in the example above) to a Draftail type, and the inverse mapping is done with Draft.js exporter configuration [https://github.com/springload/draftjs_exporter] of the style_map.

Creating new blocks

Blocks are nearly as simple as inline styles:

from wagtail.admin.rich_text.converters.html_to_contentstate import BlockElementHandler

@hooks.register('register_rich_text_features')
def register_help_text_feature(features):
 """
 Registering the `help-text` feature, which uses the `help-text` Draft.js block type,
 and is stored as HTML with a `<div class="help-text">` tag.
 """
 feature_name = 'help-text'
 type_ = 'help-text'

 control = {
 'type': type_,
 'label': '?',
 'description': 'Help text',
 # Optionally, we can tell Draftail what element to use when displaying those blocks in the editor.
 'element': 'div',
 }

 features.register_editor_plugin(
 'draftail', feature_name, draftail_features.BlockFeature(control, css={'all': ['help-text.css']})
)

 features.register_converter_rule('contentstate', feature_name, {
 'from_database_format': {'div[class=help-text]': BlockElementHandler(type_)},
 'to_database_format': {'block_map': {type_: {'element': 'div', 'props': {'class': 'help-text'}}}},
 })

Here are the main differences:

	We can configure an element to tell Draftail how to render those blocks in the editor.

	We register the plugin with BlockFeature.

	We set up the conversion with BlockElementHandler and block_map.

Optionally, we can also define styles for the blocks with the Draftail-block--help-text (Draftail-block--<block type>) CSS class.

That’s it! The extra complexity is that you may need to write CSS to style the blocks in the editor.

Creating new entities

Warning

This is an advanced feature. Please carefully consider whether you really need this.

Entities aren’t simply formatting buttons in the toolbar. They usually need to be much more versatile, communicating to APIs or requesting further user input. As such,

	You will most likely need to write a hefty dose of JavaScript, some of it with React.

	The API is very low-level. You will most likely need some Draft.js knowledge.

	Custom UIs in rich text can be brittle. Be ready to spend time testing in multiple browsers.

The good news is that having such a low-level API will enable third-party Wagtail plugins to innovate on rich text features, proposing new kinds of experiences.
But in the meantime, consider implementing your UI through StreamField instead, which has a battle-tested API meant for Django developers.

Here are the main requirements to create a new entity feature:

	Like for inline styles and blocks, register an editor plugin.

	The editor plugin must define a source: a React component responsible for creating new entity instances in the editor, using the Draft.js API.

	The editor plugin also needs a decorator (for inline entities) or block (for block entities): a React component responsible for displaying entity instances within the editor.

	Like for inline styles and blocks, set up the to/from DB conversion.

	The conversion usually is more involved, since entities contain data that needs to be serialised to HTML.

To write the React components, Wagtail exposes its own React, Draft.js and Draftail dependencies as global variables. Read more about this in Extending client-side components.
To go further, please look at the Draftail documentation [https://www.draftail.org/docs/formatting-options] as well as the Draft.js exporter documentation [https://github.com/springload/draftjs_exporter].

Here is a detailed example to showcase how those tools are used in the context of Wagtail.
For the sake of our example, we can imagine a news team working at a financial newspaper.
They want to write articles about the stock market, refer to specific stocks anywhere inside of their content (eg. “$TSLA” tokens in a sentence), and then have their article automatically enriched with the stock’s information (a link, a number, a sparkline).

The editor toolbar could contain a “stock chooser” that displays a list of available stocks, then inserts the user’s selection as a textual token. For our example, we will just pick a stock at random:

[image: ../../_images/draftail_entity_stock_source.gif]
Those tokens are then saved in the rich text on publish. When the news article is displayed on the site, we then insert live market data coming from an API next to each token:

[image: ../../_images/draftail_entity_stock_rendering.png]
In order to achieve this, we start with registering the rich text feature like for inline styles and blocks:

@hooks.register('register_rich_text_features')
def register_stock_feature(features):
 features.default_features.append('stock')
 """
 Registering the `stock` feature, which uses the `STOCK` Draft.js entity type,
 and is stored as HTML with a `` tag.
 """
 feature_name = 'stock'
 type_ = 'STOCK'

 control = {
 'type': type_,
 'label': '$',
 'description': 'Stock',
 }

 features.register_editor_plugin(
 'draftail', feature_name, draftail_features.EntityFeature(
 control,
 js=['stock.js'],
 css={'all': ['stock.css']}
)
)

 features.register_converter_rule('contentstate', feature_name, {
 # Note here that the conversion is more complicated than for blocks and inline styles.
 'from_database_format': {'span[data-stock]': StockEntityElementHandler(type_)},
 'to_database_format': {'entity_decorators': {type_: stock_entity_decorator}},
 })

The js and css keyword arguments on EntityFeature can be used to specify additional
JS and CSS files to load when this feature is active. Both are optional. Their values are added to a Media object, more documentation on these objects
is available in the Django Form Assets documentation [https://docs.djangoproject.com/en/stable/topics/forms/media/].

Since entities hold data, the conversion to/from database format is more complicated. We have to create the two handlers:

from draftjs_exporter.dom import DOM
from wagtail.admin.rich_text.converters.html_to_contentstate import InlineEntityElementHandler

def stock_entity_decorator(props):
 """
 Draft.js ContentState to database HTML.
 Converts the STOCK entities into a span tag.
 """
 return DOM.create_element('span', {
 'data-stock': props['stock'],
 }, props['children'])

class StockEntityElementHandler(InlineEntityElementHandler):
 """
 Database HTML to Draft.js ContentState.
 Converts the span tag into a STOCK entity, with the right data.
 """
 mutability = 'IMMUTABLE'

 def get_attribute_data(self, attrs):
 """
 Take the ``stock`` value from the ``data-stock`` HTML attribute.
 """
 return {
 'stock': attrs['data-stock'],
 }

Note how they both do similar conversions, but use different APIs. to_database_format is built with the Draft.js exporter [https://github.com/springload/draftjs_exporter] components API, whereas from_database_format uses a Wagtail API.

The next step is to add JavaScript to define how the entities are created (the source), and how they are displayed (the decorator). Within stock.js, we define the source component:

const React = window.React;
const Modifier = window.DraftJS.Modifier;
const EditorState = window.DraftJS.EditorState;

const DEMO_STOCKS = ['AMD', 'AAPL', 'TWTR', 'TSLA', 'BTC'];

// Not a real React component – just creates the entities as soon as it is rendered.
class StockSource extends React.Component {
 componentDidMount() {
 const { editorState, entityType, onComplete } = this.props;

 const content = editorState.getCurrentContent();
 const selection = editorState.getSelection();

 const randomStock = DEMO_STOCKS[Math.floor(Math.random() * DEMO_STOCKS.length)];

 // Uses the Draft.js API to create a new entity with the right data.
 const contentWithEntity = content.createEntity(entityType.type, 'IMMUTABLE', {
 stock: randomStock,
 });
 const entityKey = contentWithEntity.getLastCreatedEntityKey();

 // We also add some text for the entity to be activated on.
 const text = `$${randomStock}`;

 const newContent = Modifier.replaceText(content, selection, text, null, entityKey);
 const nextState = EditorState.push(editorState, newContent, 'insert-characters');

 onComplete(nextState);
 }

 render() {
 return null;
 }
}

This source component uses data and callbacks provided by Draftail [https://www.draftail.org/docs/api].
It also uses dependencies from global variables – see Extending client-side components.

We then create the decorator component:

const Stock = (props) => {
 const { entityKey, contentState } = props;
 const data = contentState.getEntity(entityKey).getData();

 return React.createElement('a', {
 role: 'button',
 onMouseUp: () => {
 window.open(`https://finance.yahoo.com/quote/${data.stock}`);
 },
 }, props.children);
};

This is a straightforward React component. It does not use JSX since we do not want to have to use a build step for our JavaScript. It uses ES6 syntax – this would not work in IE11 unless it was converted back to ES5 with a build step.

Finally, we register the JS components of our plugin:

window.draftail.registerPlugin({
 type: 'STOCK',
 source: StockSource,
 decorator: Stock,
});

And that’s it! All of this setup will finally produce the following HTML on the site’s front-end:

<p>
 Anyone following Elon Musk’s $TSLA should also look into $BTC.
</p>

To fully complete the demo, we can add a bit of JavaScript to the front-end in order to decorate those tokens with links and a little sparkline.

[].slice.call(document.querySelectorAll('[data-stock]')).forEach((elt) => {
 const link = document.createElement('a');
 link.href = `https://finance.yahoo.com/quote/${elt.dataset.stock}`;
 link.innerHTML = `${elt.innerHTML}<svg width="50" height="20" stroke-width="2" stroke="blue" fill="rgba(0, 0, 255, .2)"><path d="M4 14.19 L 4 14.19 L 13.2 14.21 L 22.4 13.77 L 31.59 13.99 L 40.8 13.46 L 50 11.68 L 59.19 11.35 L 68.39 10.68 L 77.6 7.11 L 86.8 7.85 L 96 4" fill="none"></path><path d="M4 14.19 L 4 14.19 L 13.2 14.21 L 22.4 13.77 L 31.59 13.99 L 40.8 13.46 L 50 11.68 L 59.19 11.35 L 68.39 10.68 L 77.6 7.11 L 86.8 7.85 L 96 4 V 20 L 4 20 Z" stroke="none"></path></svg>`;

 elt.innerHTML = '';
 elt.appendChild(link);
});

Custom block entities can also be created (have a look at the separate Draftail documentation [https://www.draftail.org/docs/blocks]), but these are not detailed here since StreamField is the go-to way to create block-level rich text in Wagtail.

Integration of the Draftail widgets

To further customise how the Draftail widgets are integrated into the UI, there are additional extension points for CSS and JS:

	In JavaScript, use the [data-draftail-input] attribute selector to target the input which contains the data, and [data-draftail-editor-wrapper] for the element which wraps the editor.

	The editor instance is bound on the input field for imperative access. Use document.querySelector('[data-draftail-input]').draftailEditor.

	In CSS, use the classes prefixed with Draftail-.

Extending the Hallo Editor

Warning

As of Wagtail 2.0, the hallo.js editor is deprecated. We have no intentions to remove it from Wagtail as of yet, but it will no longer receive bug fixes. Please be aware of the known hallo.js issues [https://github.com/wagtail/wagtail/issues?q=is%3Aissue+is%3Aclosed+hallo+label%3A%22component%3ARich+text%22+label%3Atype%3ABug+label%3A%22status%3AWont+Fix%22] should you want to keep using it.

To use hallo.js on Wagtail 2.x, add the following to your settings:

WAGTAILADMIN_RICH_TEXT_EDITORS = {
 'default': {
 'WIDGET': 'wagtail.admin.rich_text.HalloRichTextArea'
 }
}

The legacy hallo.js editor’s functionality can be extended through plugins. For information on developing custom hallo.js plugins, see the project’s page: https://github.com/bergie/hallo

Once the plugin has been created, it should be registered through the feature registry’s register_editor_plugin(editor, feature_name, plugin) method. For a hallo.js plugin, the editor parameter should always be 'hallo'.

A plugin halloblockquote, implemented in myapp/js/hallo-blockquote.js, that adds support for the <blockquote> tag, would be registered under the feature name block-quote as follows:

from wagtail.admin.rich_text import HalloPlugin
from wagtail.core import hooks

@hooks.register('register_rich_text_features')
def register_embed_feature(features):
 features.register_editor_plugin(
 'hallo', 'block-quote',
 HalloPlugin(
 name='halloblockquote',
 js=['myapp/js/hallo-blockquote.js'],
)
)

The constructor for HalloPlugin accepts the following keyword arguments:

	name - the plugin name as defined in the JavaScript code. hallo.js plugin names are prefixed with the "IKS." namespace, but the name passed here should be without the prefix.

	options - a dictionary (or other JSON-serialisable object) of options to be passed to the JavaScript plugin code on initialisation

	js - a list of JavaScript files to be imported for this plugin, defined in the same way as a Django form media [https://docs.djangoproject.com/en/stable/topics/forms/media/] definition

	css - a dictionary of CSS files to be imported for this plugin, defined in the same way as a Django form media [https://docs.djangoproject.com/en/stable/topics/forms/media/] definition

	order - an index number (default 100) specifying the order in which plugins should be listed, which in turn determines the order buttons will appear in the toolbar

When writing the front-end code for the plugin, Wagtail’s Hallo implementation offers two extension points:

	In JavaScript, use the [data-hallo-editor] attribute selector to target the editor, eg. var $editor = $('[data-hallo-editor]');.

	In CSS, use the .halloeditor class selector.

Whitelisting rich text elements

After extending the editor to support a new HTML element, you’ll need to add it to the whitelist of permitted elements - Wagtail’s standard behaviour is to strip out unrecognised elements, to prevent editors from inserting styles and scripts (either deliberately, or inadvertently through copy-and-paste) that the developer didn’t account for.

Elements can be added to the whitelist through the feature registry’s register_converter_rule(converter, feature_name, ruleset) method. When the hallo.js editor is in use, the converter parameter should always be 'editorhtml'.

The following code will add the <blockquote> element to the whitelist whenever the block-quote feature is active:

from wagtail.admin.rich_text.converters.editor_html import WhitelistRule
from wagtail.core.whitelist import allow_without_attributes

@hooks.register('register_rich_text_features')
def register_blockquote_feature(features):
 features.register_converter_rule('editorhtml', 'block-quote', [
 WhitelistRule('blockquote', allow_without_attributes),
])

WhitelistRule is passed the element name, and a callable which will perform some kind of manipulation of the element whenever it is encountered. This callable receives the element as a BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/bs4/doc/] Tag object.

The wagtail.core.whitelist module provides a few helper functions to assist in defining these handlers: allow_without_attributes, a handler which preserves the element but strips out all of its attributes, and attribute_rule which accepts a dict specifying how to handle each attribute, and returns a handler function. This dict will map attribute names to either True (indicating that the attribute should be kept), False (indicating that it should be dropped), or a callable (which takes the initial attribute value and returns either a final value for the attribute, or None to drop the attribute).

Customising admin templates

In your projects with Wagtail, you may wish to replace elements such as the Wagtail logo within the admin interface with your own branding. This can be done through Django’s template inheritance mechanism.

You need to create a templates/wagtailadmin/ folder within one of your apps - this may be an existing one, or a new one created for this purpose, for example, dashboard. This app must be registered in INSTALLED_APPS before wagtail.admin:

INSTALLED_APPS = (
 # ...

 'dashboard',

 'wagtail.core',
 'wagtail.admin',

 # ...
)

Custom branding

The template blocks that are available to customise the branding in the admin interface are as follows:

branding_logo

To replace the default logo, create a template file dashboard/templates/wagtailadmin/base.html that overrides the block branding_logo:

{% extends "wagtailadmin/base.html" %}
{% load static %}

{% block branding_logo %}

{% endblock %}

The logo also appears on the admin 404 error page; to replace it there too, create a template file dashboard/templates/wagtailadmin/404.html that overrides the branding_logo block.

branding_favicon

To replace the favicon displayed when viewing admin pages, create a template file dashboard/templates/wagtailadmin/admin_base.html that overrides the block branding_favicon:

{% extends "wagtailadmin/admin_base.html" %}
{% load static %}

{% block branding_favicon %}
 <link rel="shortcut icon" href="{% static 'images/favicon.ico' %}" />
{% endblock %}

branding_title

To replace the title prefix (which is ‘Wagtail’ by default), create a template file dashboard/templates/wagtailadmin/admin_base.html that overrides the block branding_title:

{% extends "wagtailadmin/admin_base.html" %}

{% block branding_title %}Frank's CMS{% endblock %}

branding_login

To replace the login message, create a template file dashboard/templates/wagtailadmin/login.html that overrides the block branding_login:

{% extends "wagtailadmin/login.html" %}

{% block branding_login %}Sign in to Frank's Site{% endblock %}

branding_welcome

To replace the welcome message on the dashboard, create a template file dashboard/templates/wagtailadmin/home.html that overrides the block branding_welcome:

{% extends "wagtailadmin/home.html" %}

{% block branding_welcome %}Welcome to Frank's Site{% endblock %}

Specifying a site or page in the branding

The admin interface has a number of variables available to the renderer context that can be used to customize the branding in the admin page. These can be useful for customizing the dashboard on a multitenanted Wagtail installation:

root_page

Returns the highest explorable page object for the currently logged in user. If the user has no explore rights, this will default to None.

root_site

Returns the name on the site record for the above root page.

site_name

Returns the value of root_site, unless it evaluates to None. In that case, it will return the value of settings.WAGTAIL_SITE_NAME.

To use these variables, create a template file dashboard/templates/wagtailadmin/home.html, just as if you were overriding one of the template blocks in the dashboard, and use them as you would any other Django template variable:

{% extends "wagtailadmin/home.html" %}

{% block branding_welcome %}Welcome to the Admin Homepage for {{ root_site }}{% endblock %}

Extending the login form

To add extra controls to the login form, create a template file dashboard/templates/wagtailadmin/login.html.

above_login and below_login

To add content above or below the login form, override these blocks:

{% extends "wagtailadmin/login.html" %}

{% block above_login %} If you are not Frank you should not be here! {% endblock %}

fields

To add extra fields to the login form, override the fields block. You will need to add {{ block.super }} somewhere in your block to include the username and password fields:

{% extends "wagtailadmin/login.html" %}

{% block fields %}
 {{ block.super }}
 <li class="full">
 <div class="field iconfield">
 Two factor auth token
 <div class="input icon-key">
 <input type="text" name="two-factor-auth">
 </div>
 </div>

{% endblock %}

submit_buttons

To add extra buttons to the login form, override the submit_buttons block. You will need to add {{ block.super }} somewhere in your block to include the sign in button:

{% extends "wagtailadmin/login.html" %}

{% block submit_buttons %}
 {{ block.super }}
 <button type="button" class="button">{% trans 'Sign up' %}</button>
{% endblock %}

login_form

To completely customise the login form, override the login_form block. This block wraps the whole contents of the <form> element:

{% extends "wagtailadmin/login.html" %}

{% block login_form %}
 <p>Some extra form content</p>
 {{ block.super }}
{% endblock %}

Extending client-side components

Some of Wagtail’s admin interface is written as client-side JavaScript with React [https://reactjs.org/].
In order to customise or extend those components, you may need to use React too, as well as other related libraries.
To make this easier, Wagtail exposes its React-related dependencies as global variables within the admin. Here are the available packages:

// 'focus-trap-react'
window.FocusTrapReact;
// 'react'
window.React;
// 'react-dom'
window.ReactDOM;
// 'react-transition-group/CSSTransitionGroup'
window.CSSTransitionGroup;

Wagtail also exposes some of its own React components. You can reuse:

window.wagtail.components.Icon;
window.wagtail.components.Portal;

Pages containing rich text editors also have access to:

// 'draft-js'
window.DraftJS;
// 'draftail'
window.Draftail;

// Wagtail’s Draftail-related APIs and components.
window.draftail;
window.draftail.ModalWorkflowSource;
window.draftail.Tooltip;
window.draftail.TooltipEntity;

Custom user models

Custom user forms example

This example shows how to add a text field and foreign key field to a custom user model
and configure Wagtail user forms to allow the fields values to be updated.

Create a custom user model. This must at minimum inherit from AbstractBaseUser and PermissionsMixin. In this case we extend the AbstractUser class and add two fields. The foreign key references another model (not shown).

from django.contrib.auth.models import AbstractUser

class User(AbstractUser):
 country = models.CharField(verbose_name='country', max_length=255)
 status = models.ForeignKey(MembershipStatus, on_delete=models.SET_NULL, null=True, default=1)

Add the app containing your user model to INSTALLED_APPS and set AUTH_USER_MODEL [https://docs.djangoproject.com/en/stable/topics/auth/customizing/#substituting-a-custom-user-model] to reference
your model. In this example the app is called users and the model is User

AUTH_USER_MODEL = 'users.User'

Create your custom user ‘create’ and ‘edit’ forms in your app:

from django import forms
from django.utils.translation import ugettext_lazy as _

from wagtail.users.forms import UserEditForm, UserCreationForm

from users.models import MembershipStatus

class CustomUserEditForm(UserEditForm):
 country = forms.CharField(required=True, label=_("Country"))
 status = forms.ModelChoiceField(queryset=MembershipStatus.objects, required=True, label=_("Status"))

class CustomUserCreationForm(UserCreationForm):
 country = forms.CharField(required=True, label=_("Country"))
 status = forms.ModelChoiceField(queryset=MembershipStatus.objects, required=True, label=_("Status"))

Extend the Wagtail user ‘create’ and ‘edit’ templates. These extended templates should be placed in a
template directory wagtailusers/users.

Template create.html:

{% extends "wagtailusers/users/create.html" %}

{% block extra_fields %}
 {% include "wagtailadmin/shared/field_as_li.html" with field=form.country %}
 {% include "wagtailadmin/shared/field_as_li.html" with field=form.status %}
{% endblock extra_fields %}

Template edit.html:

{% extends "wagtailusers/users/edit.html" %}

{% block extra_fields %}
 {% include "wagtailadmin/shared/field_as_li.html" with field=form.country %}
 {% include "wagtailadmin/shared/field_as_li.html" with field=form.status %}
{% endblock extra_fields %}

The extra_fields block allows fields to be inserted below the last_name field
in the default templates. Other block overriding options exist to allow appending
fields to the end or beginning of the existing fields, or to allow all the fields to
be redefined.

Add the wagtail settings to your project to reference the user form additions:

WAGTAIL_USER_EDIT_FORM = 'users.forms.CustomUserEditForm'
WAGTAIL_USER_CREATION_FORM = 'users.forms.CustomUserCreationForm'
WAGTAIL_USER_CUSTOM_FIELDS = ['country', 'status']

Third-party tutorials

Warning

The following list is a collection of tutorials and development notes from third-party developers.
Some of the older links may not apply to the latest Wagtail versions.

	How do I Wagtail [https://foundation.mozilla.org/en/docs/how-do-i-wagtail/] - An Editor’s Guide for Mozilla’s usage of Wagtail (25 April 2019)

	Learn Wagtail [https://learnwagtail.com/] - Regular video tutorials about all aspects of Wagtail (1 March 2019)

	How to add buttons to ModelAdmin Index View in Wagtail CMS [https://timonweb.com/tutorials/how-to-add-buttons-to-modeladmin-index-view-in-wagtail-cms/] (23 January 2019)

	Wagtail Tutorial Series [https://www.accordbox.com/blog/wagtail-tutorials/] (20 January 2019)

	How to Deploy Wagtail to Google App Engine PaaS (Video) [https://www.youtube.com/watch?v=uD9PTag2-PQ] (18 December 2018)

	How To Prevent Users From Creating Pages by Page Type [https://timonweb.com/tutorials/prevent-users-from-creating-certain-page-types-in-wagtail-cms/] (25 October 2018)

	How to Deploy Wagtail to Jelastic PaaS [https://jelastic.com/blog/deploy-wagtail-python-cms/] (11 October 2018)

	Basic Introduction to Setting Up Wagtail [https://medium.com/nonstopio/wagtail-an-open-source-cms-cec6b93706da] (15 August 2018)

	E-Commerce for Django developers (with Wagtail shop tutorial) [https://snipcart.com/blog/django-ecommerce-tutorial-wagtail-cms] (5 July 2018)

	Supporting StreamFields, Snippets and Images in a Wagtail GraphQL API [https://wagtail.io/blog/graphql-with-streamfield/] (14 June 2018)

	Wagtail and GraphQL [https://jossingram.wordpress.com/2018/04/19/wagtail-and-graphql/] (19 April 2018)

	Wagtail and Azure storage blob containers [https://jossingram.wordpress.com/2017/11/29/wagtail-and-azure-storage-blob-containers/] (29 November 2017)

	Building TwilioQuest with Twilio Sync, Django [incl. Wagtail], and Vue.js [https://www.twilio.com/blog/2017/11/building-twilioquest-with-twilio-sync-django-and-vue-js.html] (6 November 2017)

	Image upload in wagtail forms [https://posts-by.lb.ee/image-uploads-in-wagtail-forms-3121c9b35d27] (3 September 2017)

	Upgrading from Wagtail 1.0 to Wagtail 1.11 [https://www.caktusgroup.com/blog/2017/07/19/upgrading-wagtail/] (19 July 2017)

	Wagtail-Multilingual: a simple project to demonstrate how multilingual is implemented [https://github.com/cristovao-alves/Wagtail-Multilingual] (31 January 2017)

	Wagtail: 2 Steps for Adding Pages Outside of the CMS [https://www.caktusgroup.com/blog/2016/02/15/wagtail-2-steps-adding-pages-outside-cms/] (15 February 2016)

	Adding a Twitter Widget for Wagtail’s new StreamField [https://jossingram.wordpress.com/2015/04/02/adding-a-twitter-widget-for-wagtails-new-streamfield/] (2 April 2015)

	Working With Wagtail: Menus [https://www.tivix.com/blog/working-with-wagtail-menus/] (22 January 2015)

	Upgrading Wagtail to use Django 1.7 locally using vagrant [https://jossingram.wordpress.com/2014/12/10/upgrading-wagtail-to-use-django-1-7-locally-using-vagrant/] (10 December 2014)

	Wagtail redirect page. Can link to page, URL and document [https://gist.github.com/alej0varas/e7e334643ceab6e65744] (24 September 2014)

	Outputing JSON for a model with properties and db fields in Wagtail/Django [https://jossingram.wordpress.com/2014/09/24/outputing-json-for-a-model-with-properties-and-db-fields-in-wagtaildjango/] (24 September 2014)

	Bi-lingual website using Wagtail CMS [https://jossingram.wordpress.com/2014/09/17/bi-lingual-website-using-wagtail-cms/] (17 September 2014)

	Wagtail CMS – Lesser known features [https://jossingram.wordpress.com/2014/09/12/wagtail-cms-lesser-known-features/] (12 September 2014)

	Wagtail notes: stateful on/off hallo.js plugins [https://www.coactivate.org/projects/ejucovy/blog/2014/08/09/wagtail-notes-stateful-onoff-hallojs-plugins/] (9 August 2014)

	Add some blockquote buttons to Wagtail CMS’ WYSIWYG Editor [https://jossingram.wordpress.com/2014/07/24/add-some-blockquote-buttons-to-wagtail-cms-wysiwyg-editor/] (24 July 2014)

	Adding Bread Crumbs to the front end in Wagtail CMS [https://jossingram.wordpress.com/2014/07/01/adding-bread-crumbs-to-the-front-end-in-wagtail-cms/] (1 July 2014)

	Extending hallo.js using Wagtail hooks [https://gist.github.com/jeffrey-hearn/502d0914fa4a930f08ac] (9 July 2014)

	Wagtail notes: custom tabs per page type [https://www.coactivate.org/projects/ejucovy/blog/2014/05/10/wagtail-notes-custom-tabs-per-page-type/] (10 May 2014)

	Wagtail notes: managing redirects as pages [https://www.coactivate.org/projects/ejucovy/blog/2014/05/10/wagtail-notes-managing-redirects-as-pages/] (10 May 2014)

	Wagtail notes: dynamic templates per page [https://www.coactivate.org/projects/ejucovy/blog/2014/05/10/wagtail-notes-dynamic-templates-per-page/] (10 May 2014)

	Wagtail notes: type-constrained PageChooserPanel [https://www.coactivate.org/projects/ejucovy/blog/2014/05/09/wagtail-notes-type-constrained-pagechooserpanel/] (9 May 2014)

You can also find more resources from the community on Awesome Wagtail [https://github.com/springload/awesome-wagtail].

Tip

We are working on a collection of Wagtail tutorials and best practices. Please tweet @WagtailCMS [https://twitter.com/WagtailCMS] or contact us directly to share your Wagtail HOWTOs, development notes or site launches.

Jinja2 template support

Wagtail supports Jinja2 templating for all front end features. More information on each of the template tags below can be found in the Writing templates documentation.

Configuring Django

Django needs to be configured to support Jinja2 templates. As the Wagtail admin is written using regular Django templates, Django has to be configured to use both templating engines. Add the following configuration to the TEMPLATES setting for your app:

TEMPLATES = [
 # ...
 {
 'BACKEND': 'django.template.backends.jinja2.Jinja2',
 'APP_DIRS': True,
 'OPTIONS': {
 'extensions': [
 'wagtail.core.jinja2tags.core',
 'wagtail.admin.jinja2tags.userbar',
 'wagtail.images.jinja2tags.images',
],
 },
 }
]

Jinja templates must be placed in a jinja2/ directory in your app. The template for an EventPage model in an events app should be created at events/jinja2/events/event_page.html.

By default, the Jinja environment does not have any Django functions or filters. The Django documentation has more information on configuring Jinja for Django [https://docs.djangoproject.com/en/stable/topics/templates/#django.template.backends.jinja2.Jinja2].

self in templates

In Django templates, self can be used to refer to the current page, stream block, or field panel. In Jinja, self is reserved for internal use. When writing Jinja templates, use page to refer to pages, value for stream blocks, and field_panel for field panels.

Template tags, functions & filters

pageurl()

Generate a URL for a Page instance:

More information

See pageurl for more information

slugurl()

Generate a URL for a Page with a slug:

About us

See slugurl for more information

image()

Resize an image, and print an tag:

{# Print an image tag #}
{{ image(page.header_image, "fill-1024x200", class="header-image") }}

{# Resize an image #}
{% set background=image(page.background_image, "max-1024x1024") %}
<div class="wrapper" style="background-image: url({{ background.url }});">

See Using images in templates for more information

|richtext

Transform Wagtail’s internal HTML representation, expanding internal references to pages and images.

{{ page.body|richtext }}

See Rich text (filter) for more information

wagtailuserbar()

Output the Wagtail contextual flyout menu for editing pages from the front end

{{ wagtailuserbar() }}

See Wagtail User Bar for more information

{% include_block %}

Output the HTML representation for the stream content as a whole, as well as for each individual block.

Allows to pass template context (by default) to the StreamField template.

{% include_block page.body %}
{% include_block page.body with context %} {# The same as the previous #}
{% include_block page.body without context %}

See StreamField template rendering for more information.

Note

The {% include_block %} tag is designed to closely follow the syntax and behaviour
of Jinja’s {% include %}, so it does not implement the Django version’s feature of
only passing specified variables into the context.

Testing your Wagtail site

Wagtail comes with some utilities that simplify writing tests for your site.

WagtailPageTests

	
class wagtail.tests.utils.WagtailPageTests

	WagtailPageTests extends django.test.TestCase, adding a few new assert methods. You should extend this class to make use of its methods:

from wagtail.tests.utils import WagtailPageTests
from myapp.models import MyPage

class MyPageTests(WagtailPageTests):
 def test_can_create_a_page(self):
 ...

	
assertCanCreateAt(parent_model, child_model, msg=None)

	Assert a particular child Page type can be created under a parent
Page type. parent_model and child_model should be the Page
classes being tested.

def test_can_create_under_home_page(self):
 # You can create a ContentPage under a HomePage
 self.assertCanCreateAt(HomePage, ContentPage)

	
assertCanNotCreateAt(parent_model, child_model, msg=None)

	Assert a particular child Page type can not be created under a parent
Page type. parent_model and child_model should be the Page
classes being tested.

def test_cant_create_under_event_page(self):
 # You can not create a ContentPage under an EventPage
 self.assertCanNotCreateAt(EventPage, ContentPage)

	
assertCanCreate(parent, child_model, data, msg=None)

	Assert that a child of the given Page type can be created under the
parent, using the supplied POST data.

parent should be a Page instance, and child_model should be a
Page subclass. data should be a dict that will be POSTed at the
Wagtail admin Page creation method.

from wagtail.tests.utils.form_data import nested_form_data, streamfield

def test_can_create_content_page(self):
 # Get the HomePage
 root_page = HomePage.objects.get(pk=2)

 # Assert that a ContentPage can be made here, with this POST data
 self.assertCanCreate(root_page, ContentPage, nested_form_data({
 'title': 'About us',
 'body': streamfield([
 ('text', 'Lorem ipsum dolor sit amet'),
])
 }))

See Form data helpers for a set of functions useful for constructing POST data.

	
assertAllowedParentPageTypes(child_model, parent_models, msg=None)

	Test that the only page types that child_model can be created under
are parent_models.

The list of allowed parent models may differ from those set in
Page.parent_page_types, if the parent models have set
Page.subpage_types.

def test_content_page_parent_pages(self):
 # A ContentPage can only be created under a HomePage
 # or another ContentPage
 self.assertAllowedParentPageTypes(
 ContentPage, {HomePage, ContentPage})

 # An EventPage can only be created under an EventIndex
 self.assertAllowedParentPageTypes(
 EventPage, {EventIndex})

	
assertAllowedSubpageTypes(parent_model, child_models, msg=None)

	Test that the only page types that can be created under
parent_model are child_models.

The list of allowed child models may differ from those set in
Page.subpage_types, if the child models have set
Page.parent_page_types.

def test_content_page_subpages(self):
 # A ContentPage can only have other ContentPage children
 self.assertAllowedSubpageTypes(
 ContentPage, {ContentPage})

 # A HomePage can have ContentPage and EventIndex children
 self.assertAllowedParentPageTypes(
 HomePage, {ContentPage, EventIndex})

Form data helpers

The assertCanCreate method requires page data to be passed in
the same format that the page edit form would submit. For complex
page types, it can be difficult to construct this data structure by hand;
the wagtail.tests.utils.form_data module provides a set of helper
functions to assist with this.

	
wagtail.tests.utils.form_data.nested_form_data(data)

	Translates a nested dict structure into a flat form data dict
with hyphen-separated keys.

nested_form_data({
 'foo': 'bar',
 'parent': {
 'child': 'field',
 },
})
Returns: {'foo': 'bar', 'parent-child': 'field'}

	
wagtail.tests.utils.form_data.rich_text(value, editor='default', features=None)

	Converts an HTML-like rich text string to the data format required by
the currently active rich text editor.

	Parameters

	
	editor – An alternative editor name as defined in WAGTAILADMIN_RICH_TEXT_EDITORS

	features – A list of features allowed in the rich text content (see Limiting features in a rich text field)

self.assertCanCreate(root_page, ContentPage, nested_form_data({
 'title': 'About us',
 'body': rich_text('<p>Lorem ipsum dolor sit amet</p>'),
}))

	
wagtail.tests.utils.form_data.streamfield(items)

	Takes a list of (block_type, value) tuples and turns it in to
StreamField form data. Use this within a nested_form_data()
call, with the field name as the key.

nested_form_data({'content': streamfield([
 ('text', 'Hello, world'),
])})
Returns:
{
'content-count': '1',
'content-0-type': 'text',
'content-0-value': 'Hello, world',
'content-0-order': '0',
'content-0-deleted': '',
}

	
wagtail.tests.utils.form_data.inline_formset(items, initial=0, min=0, max=1000)

	Takes a list of form data for an InlineFormset and translates
it in to valid POST data. Use this within a nested_form_data()
call, with the formset relation name as the key.

nested_form_data({'lines': inline_formset([
 {'text': 'Hello'},
 {'text': 'World'},
])})
Returns:
{
'lines-TOTAL_FORMS': '2',
'lines-INITIAL_FORMS': '0',
'lines-MIN_NUM_FORMS': '0',
'lines-MAX_NUM_FORMS': '1000',
'lines-0-text': 'Hello',
'lines-0-ORDER': '0',
'lines-0-DELETE': '',
'lines-1-text': 'World',
'lines-1-ORDER': '1',
'lines-1-DELETE': '',
}

Fixtures

Using dumpdata

Creating fixtures [https://docs.djangoproject.com/en/stable/howto/initial-data/] for tests is best done by creating content in a development
environment, and using Django’s dumpdata [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-dumpdata] command.

Note that by default dumpdata will represent content_type by the primary key; this may cause consistency issues when adding / removing models, as content types are populated separately from fixtures. To prevent this, use the --natural-foreign switch, which represents content types by ["app", "model"] instead.

Manual modification

You could modify the dumped fixtures manually, or even write them all by hand.
Here are a few things to be wary of.

Custom Page models

When creating customised Page models in fixtures, you will need to add both a
wagtailcore.page entry, and one for your custom Page model.

Let’s say you have a website module which defines a Homepage(Page) class.
You could create such a homepage in a fixture with:

[
 {
 "model": "wagtailcore.page",
 "pk": 3,
 "fields": {
 "title": "My Customer's Homepage",
 "content_type": ["website", "homepage"],
 "depth": 2
 }
 },
 {
 "model": "website.homepage",
 "pk": 3,
 "fields": {}
 }
]

Treebeard fields

Filling in the path / numchild / depth fields is necessary in order for tree operations like get_parent() to work correctly.
url_path is another field that can cause errors in some uncommon cases if it isn’t filled in.

The Treebeard docs [https://django-treebeard.readthedocs.io/en/latest/mp_tree.html] might help in understanding how this works.

Wagtail API

The API module provides a public-facing, JSON-formatted API to allow retrieving
content as raw field data. This is useful for cases like serving content to
non-web clients (such as a mobile phone app) or pulling content out of Wagtail
for use in another site.

See RFC 8: Wagtail API [https://github.com/wagtail/rfcs/blob/master/text/008-wagtail-api.md#12---stable-and-unstable-versions]
for full details on our stabilisation policy.

	Wagtail API v2 Configuration Guide
	Basic configuration

	Additional settings

	Wagtail API v2 Usage Guide
	Fetching content

	Default endpoint fields

	Changes since v1

Wagtail API v2 Configuration Guide

This section of the docs will show you how to set up a public API for your
Wagtail site.

Even though the API is built on Django REST Framework, you do not need to
install this manually as it is already a dependency of Wagtail.

Basic configuration

Enable the app

Firstly, you need to enable Wagtail’s API app so Django can see it.
Add wagtail.api.v2 to INSTALLED_APPS in your Django project settings:

settings.py

INSTALLED_APPS = [
 ...

 'wagtail.api.v2',

 ...
]

Optionally, you may also want to add rest_framework to INSTALLED_APPS.
This would make the API browsable when viewed from a web browser but is not
required for basic JSON-formatted output.

Configure endpoints

Next, it’s time to configure which content will be exposed on the API. Each
content type (such as pages, images and documents) has its own endpoint.
Endpoints are combined by a router, which provides the url configuration you
can hook into the rest of your project.

Wagtail provides three endpoint classes you can use:

	Pages wagtail.api.v2.views.PagesAPIViewSet

	Images wagtail.images.api.v2.views.ImagesAPIViewSet

	Documents wagtail.documents.api.v2.views.DocumentsAPIViewSet

You can subclass any of these endpoint classes to customise their functionality.
Additionally, there is a base endpoint class you can use for adding different
content types to the API: wagtail.api.v2.views.BaseAPIViewSet

For this example, we will create an API that includes all three builtin content
types in their default configuration:

api.py

from wagtail.api.v2.views import PagesAPIViewSet
from wagtail.api.v2.router import WagtailAPIRouter
from wagtail.images.api.v2.views import ImagesAPIViewSet
from wagtail.documents.api.v2.views import DocumentsAPIViewSet

Create the router. "wagtailapi" is the URL namespace
api_router = WagtailAPIRouter('wagtailapi')

Add the three endpoints using the "register_endpoint" method.
The first parameter is the name of the endpoint (eg. pages, images). This
is used in the URL of the endpoint
The second parameter is the endpoint class that handles the requests
api_router.register_endpoint('pages', PagesAPIViewSet)
api_router.register_endpoint('images', ImagesAPIViewSet)
api_router.register_endpoint('documents', DocumentsAPIViewSet)

Next, register the URLs so Django can route requests into the API:

urls.py

from .api import api_router

urlpatterns = [
 ...

 url(r'^api/v2/', api_router.urls),

 ...

 # Ensure that the api_router line appears above the default Wagtail page serving route
 url(r'', include(wagtail_urls)),
]

With this configuration, pages will be available at /api/v2/pages/, images
at /api/v2/images/ and documents at /api/v2/documents/

Adding custom page fields

It’s likely that you would need to export some custom fields over the API. This
can be done by adding a list of fields to be exported into the api_fields
attribute for each page model.

For example:

blog/models.py

from wagtail.api import APIField

class BlogPageAuthor(Orderable):
 page = models.ForeignKey('blog.BlogPage', on_delete=models.CASCADE, related_name='authors')
 name = models.CharField(max_length=255)

 api_fields = [
 APIField('name'),
]

class BlogPage(Page):
 published_date = models.DateTimeField()
 body = RichTextField()
 feed_image = models.ForeignKey('wagtailimages.Image', on_delete=models.SET_NULL, null=True, ...)
 private_field = models.CharField(max_length=255)

 # Export fields over the API
 api_fields = [
 APIField('published_date'),
 APIField('body'),
 APIField('feed_image'),
 APIField('authors'), # This will nest the relevant BlogPageAuthor objects in the API response
]

This will make published_date, body, feed_image and a list of
authors with the name field available in the API. But to access these
fields, you must select the blog.BlogPage type using the ?type
parameter in the API itself.

Custom serialisers

Serialisers [https://www.django-rest-framework.org/api-guide/fields/] are used to convert the database representation of a model into
JSON format. You can override the serialiser for any field using the
serializer keyword argument:

from rest_framework.fields import DateField

class BlogPage(Page):
 ...

 api_fields = [
 # Change the format of the published_date field to "Thursday 06 April 2017"
 APIField('published_date', serializer=DateField(format='%A %d %B %Y')),
 ...
]

Django REST framework’s serializers can all take a source [https://www.django-rest-framework.org/api-guide/fields/#source] argument allowing you
to add API fields that have a different field name or no underlying field at all:

from rest_framework.fields import DateField

class BlogPage(Page):
 ...

 api_fields = [
 # Date in ISO8601 format (the default)
 APIField('published_date'),

 # A separate published_date_display field with a different format
 APIField('published_date_display', serializer=DateField(format='%A $d %B %Y', source='published_date')),
 ...
]

This adds two fields to the API (other fields omitted for brevity):

{
 "published_date": "2017-04-06",
 "published_date_display": "Thursday 06 April 2017"
}

Images in the API

The ImageRenditionField serialiser
allows you to add renditions of images into your API. It requires an image
filter string specifying the resize operations to perform on the image. It can
also take the source keyword argument described above.

For example:

from wagtail.images.api.fields import ImageRenditionField

class BlogPage(Page):
 ...

 api_fields = [
 # Adds information about the source image (eg, title) into the API
 APIField('feed_image'),

 # Adds a URL to a rendered thumbnail of the image to the API
 APIField('feed_image_thumbnail', serializer=ImageRenditionField('fill-100x100', source='feed_image')),
 ...
]

This would add the following to the JSON:

{
 "feed_image": {
 "id": 45529,
 "meta": {
 "type": "wagtailimages.Image",
 "detail_url": "http://www.example.com/api/v2/images/12/",
 "download_url": "/media/images/a_test_image.jpg",
 "tags": []
 },
 "title": "A test image",
 "width": 2000,
 "height": 1125
 },
 "feed_image_thumbnail": {
 "url": "/media/images/a_test_image.fill-100x100.jpg",
 "width": 100,
 "height": 100
 }
}

Note: download_url is the original uploaded file path, whereas
feed_image_thumbnail['url'] is the url of the rendered image.
When you are using another storage backend, such as S3, download_url will return
a URL to the image if your media files are properly configured.

Additional settings

WAGTAILAPI_BASE_URL

(required when using frontend cache invalidation)

This is used in two places, when generating absolute URLs to document files and
invalidating the cache.

Generating URLs to documents will fall back the the current request’s hostname
if this is not set. Cache invalidation cannot do this, however, so this setting
must be set when using this module alongside the wagtailfrontendcache module.

WAGTAILAPI_SEARCH_ENABLED

(default: True)

Setting this to false will disable full text search. This applies to all
endpoints.

WAGTAILAPI_LIMIT_MAX

(default: 20)

This allows you to change the maximum number of results a user can request at a
time. This applies to all endpoints. Set to None for no limit.

Wagtail API v2 Usage Guide

The Wagtail API module exposes a public, read only, JSON-formatted API which
can be used by external clients (such as a mobile app) or the site’s frontend.

This document is intended for developers using the API exposed by Wagtail. For
documentation on how to enable the API module in your Wagtail site, see
Wagtail API v2 Configuration Guide

Contents

	Wagtail API v2 Usage Guide

	Fetching content

	Example response

	Custom page fields in the API

	Pagination

	Ordering

	Random ordering

	Filtering

	Filtering by tree position (pages only)

	Search

	Search operator

	Fields

	Additional fields

	All fields

	Removing fields

	Removing all default fields

	Detail views

	Finding pages by HTML path

	Default endpoint fields

	Common fields

	Pages

	Images

	Documents

	Changes since v1

	Breaking changes

	Major features

	Minor features

Fetching content

To fetch content over the API, perform a GET request against one of the
following endpoints:

	Pages /api/v2/pages/

	Images /api/v2/images/

	Documents /api/v2/documents/

Note

The available endpoints and their URLs may vary from site to site, depending
on how the API has been configured.

Example response

Each response contains the list of items (items) and the total count
(meta.total_count). The total count is irrespective of pagination.

GET /api/v2/endpoint_name/

HTTP 200 OK
Content-Type: application/json

{
 "meta": {
 "total_count": "total number of results"
 },
 "items": [
 {
 "id": 1,
 "meta": {
 "type": "app_name.ModelName",
 "detail_url": "http://api.example.com/api/v2/endpoint_name/1/"
 },
 "field": "value"
 },
 {
 "id": 2,
 "meta": {
 "type": "app_name.ModelName",
 "detail_url": "http://api.example.com/api/v2/endpoint_name/2/"
 },
 "field": "different value"
 }
]
}

Custom page fields in the API

Wagtail sites contain many page types, each with their own set of fields. The
pages endpoint will only expose the common fields by default (such as
title and slug).

To access custom page fields with the API, select the page type with the
?type parameter. This will filter the results to only include pages of that
type but will also make all the exported custom fields for that type available
in the API.

For example, to access the published_date, body and authors fields
on the blog.BlogPage model in the configuration docs:

GET /api/v2/pages/?type=blog.BlogPage&fields=published_date,body,authors(name)

HTTP 200 OK
Content-Type: application/json

{
 "meta": {
 "total_count": 10
 },
 "items": [
 {
 "id": 1,
 "meta": {
 "type": "blog.BlogPage",
 "detail_url": "http://api.example.com/api/v2/pages/1/",
 "html_url": "http://www.example.com/blog/my-blog-post/",
 "slug": "my-blog-post",
 "first_published_at": "2016-08-30T16:52:00Z"
 },
 "title": "Test blog post",
 "published_date": "2016-08-30",
 "authors": [
 {
 "id": 1,
 "meta": {
 "type": "blog.BlogPageAuthor",
 },
 "name": "Karl Hobley"
 }
]
 },

 ...
]
}

Note

Only fields that have been explicitly exported by the developer may be used
in the API. This is done by adding a api_fields attribute to the page
model. You can read about configuration here.

This doesn’t apply to images/documents as there is only one model exposed in
those endpoints. But for projects that have customised image/document models,
the api_fields attribute can be used to export any custom fields into the
API.

Pagination

The number of items in the response can be changed by using the ?limit
parameter (default: 20) and the number of items to skip can be changed by using
the ?offset parameter.

For example:

GET /api/v2/pages/?offset=20&limit=20

HTTP 200 OK
Content-Type: application/json

{
 "meta": {
 "total_count": 50
 },
 "items": [
 pages 20 - 40 will be listed here.
]
}

Note

There may be a maximum value for the ?limit parameter. This can be
modified in your project settings by setting WAGTAILAPI_LIMIT_MAX to
either a number (the new maximum value) or None (which disables maximum
value check).

Ordering

The results can be ordered by any field by setting the ?order parameter to
the name of the field to order by.

GET /api/v2/pages/?order=title

HTTP 200 OK
Content-Type: application/json

{
 "meta": {
 "total_count": 50
 },
 "items": [
 pages will be listed here in ascending title order (a-z)
]
}

The results will be ordered in ascending order by default. This can be changed
to descending order by prefixing the field name with a - sign.

GET /api/v2/pages/?order=-title

HTTP 200 OK
Content-Type: application/json

{
 "meta": {
 "total_count": 50
 },
 "items": [
 pages will be listed here in descending title order (z-a)
]
}

Note

Ordering is case-sensitive so lowercase letters are always ordered after
uppercase letters when in ascending order.

Random ordering

Passing random into the ?order parameter will make results return in a
random order. If there is no caching, each request will return results in a
different order.

GET /api/v2/pages/?order=random

HTTP 200 OK
Content-Type: application/json

{
 "meta": {
 "total_count": 50
 },
 "items": [
 pages will be listed here in random order
]
}

Note

It’s not possible to use ?offset while ordering randomly because
consistent random ordering cannot be guaranteed over multiple requests
(so requests for subsequent pages may return results that also appeared in
previous pages).

Filtering

Any field may be used in an exact match filter. Use the filter name as the
parameter and the value to match against.

For example, to find a page with the slug “about”:

GET /api/v2/pages/?slug=about

HTTP 200 OK
Content-Type: application/json

{
 "meta": {
 "total_count": 1
 },
 "items": [
 {
 "id": 10,
 "meta": {
 "type": "standard.StandardPage",
 "detail_url": "http://api.example.com/api/v2/pages/10/",
 "html_url": "http://www.example.com/about/",
 "slug": "about",
 "first_published_at": "2016-08-30T16:52:00Z"
 },
 "title": "About"
 },
]
}

Filtering by tree position (pages only)

Pages can additionally be filtered by their position of the tree. For this,
there are two parameters you can use: ?child_of and ?descendant_of.

The ?child_of filter takes the id of a page and filters the list of results
to contain only direct children of that page.

For example, this can be useful for constructing the main menu, by passing the
id of the homepage to the filter:

GET /api/v2/pages/?child_of=2&show_in_menus=true

HTTP 200 OK
Content-Type: application/json

{
 "meta": {
 "total_count": 5
 },
 "items": [
 {
 "id": 3,
 "meta": {
 "type": "blog.BlogIndexPage",
 "detail_url": "http://api.example.com/api/v2/pages/3/",
 "html_url": "http://www.example.com/blog/",
 "slug": "blog",
 "first_published_at": "2016-09-21T13:54:00Z"
 },
 "title": "About"
 },
 {
 "id": 10,
 "meta": {
 "type": "standard.StandardPage",
 "detail_url": "http://api.example.com/api/v2/pages/10/",
 "html_url": "http://www.example.com/about/",
 "slug": "about",
 "first_published_at": "2016-08-30T16:52:00Z"
 },
 "title": "About"
 },

 ...
]
}

The ?descendant_of filter also takes the id of a page but includes all
descendants (children of children) instead of just directly children.

Search

Passing a query to the ?search parameter will perform a full-text search on
the results.

The query is split into “terms” (by word boundary), then each term is normalised
(lowercased and unaccented).

For example: ?search=James+Joyce

Search operator

The search_operator specifies how multiple terms in the query should be
handled. There are two possible values:

	and - All terms in the search query (excluding stop words) must exist in
each result

	or - At least one term in the search query must exist in each result

The or operator is generally better than and as it allows the user to be
inexact with their query and the ranking algorithm will make sure that
irrelevant results are not returned at the top of the page.

The default search operator depends on whether the search engine being used by
the site supports ranking. If it does (Elasticsearch), the operator will default
to or. Otherwise (database), it will default to and.

For the same reason, it’s also recommended to use the and operator when
using ?search in conjunction with ?order (as this disables ranking).

For example: ?search=James+Joyce&order=-first_published_at&search_operator=and

Fields

By default, only a subset of the available fields are returned in the response.
The ?fields parameter can be used to both add additional fields to the
response and remove default fields that you know you won’t need.

Additional fields

Additional fields can be added to the response by setting ?fields to a
comma-separated list of field names you want to add.

For example, ?fields=body,feed_image will add the body and feed_image
fields to the response.

This can also be used across relationships. For example,
?fields=body,feed_image(width,height) will nest the width and height
of the image in the response.

All fields

Setting ?fields to an asterisk (*) will add all available fields to the
response. This is useful for discovering what fields have been exported.

For example: ?fields=*

Removing fields

Fields you know that you do not need can be removed by prefixing the name with a
- and adding it to ?fields.

For example, ?fields=-title,body will remove title and add body.

This can also be used with the asterisk. For example, ?fields=*,-body
adds all fields except for body.

Removing all default fields

To specify exactly the fields you need, you can set the first item in fields to
an underscore (_) which removes all default fields.

For example, ?fields=_,title will only return the title field.

Detail views

You can retrieve a single object from the API by appending its id to the end of
the URL. For example:

	Pages /api/v2/pages/1/

	Images /api/v2/images/1/

	Documents /api/v2/documents/1/

All exported fields will be returned in the response by default. You can use the
?fields parameter to customise which fields are shown.

For example: /api/v2/pages/1/?fields=_,title,body will return just the
title and body of the page with the id of 1.

Finding pages by HTML path

You can find an individual page by its HTML path using the /api/v2/pages/find/?html_path=<path> view.

This will return either a 302 redirect response to that page’s detail view, or a 404 not found response.

For example: /api/v2/pages/find/?html_path=/ always redirects to the homepage of the site

Default endpoint fields

Common fields

These fields are returned by every endpoint.

	id (number)

	The unique ID of the object

Note

Except for page types, every other content type has its own id space
so you must combine this with the type field in order to get a
unique identifier for an object.

	type (string)

	The type of the object in app_label.ModelName format

	detail_url (string)

	The URL of the detail view for the object

Pages

	title (string)	meta.slug (string)	meta.show_in_menus (boolean)	meta.seo_title (string)	meta.search_description (string)	meta.first_published_at (date/time)

	These values are taken from their corresponding fields on the page

	meta.html_url (string)

	If the site has an HTML frontend that’s generated by Wagtail, this
field will be set to the URL of this page

	meta.parent

	Nests some information about the parent page (only available on detail
views)

 Building a site with AMP support

Building a site with AMP support

This recipe document describes a method for creating an
AMP [https://amp.dev/] version of a Wagtail site and hosting it separately
to the rest of the site on a URL prefix. It also describes how to make Wagtail
render images with the <amp-img> tag when a user is visiting a page on the
AMP version of the site.

Overview

In the next section, we will add a new URL entry that points at Wagtail’s
internal serve() view which will have the effect of rendering the whole
site again under the /amp prefix.

Then, we will add some utilities that will allow us to track whether the
current request is in the /amp prefixed version of the site without needing
a request object.

After that, we will add a template context processor to allow us to check from
within templates which version of the site is being rendered.

Then, finally, we will modify the behaviour of the {% image %} tag to make it
render <amp-img> tags when rendering the AMP version of the site.

Creating the second page tree

We can render the whole site at a different prefix by duplicating the Wagtail
URL in the project urls.py file and giving it a prefix. This must be before
the default URL from Wagtail, or it will try to find /amp as a page:

<project>/urls.py

urlpatterns += [
 # Add this line just before the default ``include(wagtail_urls)`` line
 url(r'amp/', include(wagtail_urls)),

 url(r'', include(wagtail_urls)),
]

If you now open http://localhost:8000/amp/ in your browser, you should see
the homepage.

Making pages aware of “AMP mode”

All the pages will now render under the /amp prefix, but right now there
isn’t any difference between the AMP version and the normal version.

To make changes, we need to add a way to detect which URL was used to render
the page. To do this, we will have to wrap Wagtail’s serve() view and
set a thread-local to indicate to all downstream code that AMP mode is active.

Note

Why a thread-local?

(feel free to skip this part if you’re not interested)

Modifying the request object would be the most common way to do this.
However, the image tag rendering is performed in a part of Wagtail that
does not have access to the request.

Thread-locals are global variables that can have a different value for each
running thread. As each thread only handles one request at a time, we can
use it as a way to pass around data that is specific to that request
without having to pass the request object everywhere.

Django uses thread-locals internally to track the currently active language
for the request.

Please be aware though: In Django 3.x and above, you will need to use an
asgiref.Local instead.
This is because Django 3.x handles multiple requests in a single thread
so thread-locals will no longer be unique to a single request.

Now let’s create that thread-local and some utility functions to interact with it,
save this module as amp_utils.py in an app in your project:

<app>/amp_utils.py

from contextlib import contextmanager
from threading import local

FIXME: For Django 3.0 support, replace this with asgiref.Local
_amp_mode_active = local()

@contextmanager
def activate_amp_mode():
 """
 A context manager used to activate AMP mode
 """
 _amp_mode_active.value = True
 try:
 yield
 finally:
 del _amp_mode_active.value

def amp_mode_active():
 """
 Returns True if AMP mode is currently active
 """
 return hasattr(_amp_mode_active, 'value')

This module defines two functions:

	activate_amp_mode is a context manager which can be invoked using Python’s
with syntax. In the body of the with statement, AMP mode would be active.

	amp_mode_active is a function that returns True when AMP mode is active.

Next, we need to define a view that wraps Wagtail’s builtin serve view and
invokes the activate_amp_mode context manager:

<app>/amp_views.py

from django.template.response import SimpleTemplateResponse
from wagtail.core.views import serve as wagtail_serve

from .amp_utils import activate_amp_mode

def serve(request, path):
 with activate_amp_mode():
 response = wagtail_serve(request, path)

 # Render template responses now while AMP mode is still active
 if isinstance(response, SimpleTemplateResponse):
 response.render()

 return response

Then we need to create a amp_urls.py file in the same app:

<app>/amp_urls.py

from django.conf.urls import url
from wagtail.core.urls import serve_pattern

from . import amp_views

urlpatterns = [
 url(serve_pattern, amp_views.serve, name='wagtail_amp_serve')
]

Finally, we need to update the project’s main urls.py to use this new URLs
file for the /amp prefix:

<project>/urls.py

from myapp import amp_urls as wagtail_amp_urls

urlpatterns += [
 # Change this line to point at your amp_urls instead of Wagtail's urls
 url(r'amp/', include(wagtail_amp_urls)),

 url(r'', include(wagtail_urls)),
]

After this, there shouldn’t be any noticeable difference to the AMP version of
the site.

Write a template context processor so that AMP state can be checked in templates

This is optional, but worth doing so we can confirm that everything is working
so far.

Add a amp_context_processors.py file into your app that contains the
following:

<app>/amp_context_processors.py

from .amp_utils import amp_mode_active

def amp(request):
 return {
 'amp_mode_active': amp_mode_active(),
 }

Now add the path to this context processor to the
['OPTIONS']['context_processors'] key of the TEMPLATES setting:

Either <project>/settings.py or <project>/settings/base.py

TEMPLATES = [
 {
 ...

 'OPTIONS': {
 'context_processors': [
 ...
 # Add this after other context processors
 'myapp.amp_context_processors.amp',
],
 },
 },
]

You should now be able to use the amp_mode_active variable in templates.
For example:

{% if amp_mode_active %}
 AMP MODE IS ACTIVE!
{% endif %}

Using a different page template when AMP mode is active

You’re probably not going to want to use the same templates on the AMP site as
you do on the regular web site. Let’s add some logic in to make Wagtail use a
separate template whenever a page is served with AMP enabled.

We can use a mixin, which allows us to re-use the logic on different page types.
Add the following to the bottom of the amp_utils.py file that you created earlier:

<app>/amp_utils.py

import os.path

...

class PageAMPTemplateMixin:

 @property
 def amp_template(self):
 # Get the default template name and insert `_amp` before the extension
 name, ext = os.path.splitext(self.template)
 return name + '_amp' + ext

 def get_template(self, request):
 if amp_mode_active():
 return self.amp_template

 return super().get_template(request)

Now add this mixin to any page model, for example:

<app>/models.py

from .amp_utils import PageAMPTemplateMixin

class MyPageModel(PageAMPTemplateMixin, Page):
 ...

When AMP mode is active, the template at app_label/mypagemodel_amp.html
will be used instead of the default one.

If you have a different naming convention, you can override the
amp_template attribute on the model. For example:

<app>/models.py

from .amp_utils import PageAMPTemplateMixin

class MyPageModel(PageAMPTemplateMixin, Page):
 amp_template = 'my_custom_amp_template.html'

Overriding the {% image %} tag to output <amp-img> tags

Finally, let’s change Wagtail’s {% image %} tag, so it renders an <amp-img>
tags when rendering pages with AMP enabled. We’ll make the change on the
Rendition model itself so it applies to both images rendered with the
{% image %} tag and images rendered in rich text fields as well.

Doing this with a Custom image model is easier, as
you can override the img_tag method on your custom Rendition model to
return a different tag.

For example:

from django.forms.utils import flatatt
from django.utils.safestring import mark_safe

from wagtail.images.models import AbstractRendition

...

class CustomRendition(AbstractRendition):
 def img_tag(self, extra_attributes):
 attrs = self.attrs_dict.copy()
 attrs.update(extra_attributes)

 if amp_mode_active():
 return mark_safe('<amp-img{}>'.format(flatatt(attrs)))
 else:
 return mark_safe('<img{}>'.format(flatatt(attrs)))

 ...

Without a custom image model, you will have to monkey-patch the builtin
Rendition model.
Add this anywhere in your project where it would be imported on start:

from django.forms.utils import flatatt
from django.utils.safestring import mark_safe

from wagtail.images.models import Rendition

def img_tag(rendition, extra_attributes={}):
 """
 Replacement implementation for Rendition.img_tag

 When AMP mode is on, this returns an <amp-img> tag instead of an tag
 """
 attrs = rendition.attrs_dict.copy()
 attrs.update(extra_attributes)

 if amp_mode_active():
 return mark_safe('<amp-img{}>'.format(flatatt(attrs)))
 else:
 return mark_safe('<img{}>'.format(flatatt(attrs)))

Rendition.img_tag = img_tag

 Reference

Reference

	Pages
	Theory

	Recipes

	Available panel types

	Model Reference

	Page QuerySet reference

	Contrib modules
	Site settings

	Form builder

	Sitemap generator

	Frontend cache invalidator

	RoutablePageMixin

	ModelAdmin

	PostgreSQL search engine

	Promoted search results

	TableBlock

	settings

	forms/index

	sitemaps

	frontendcache

	routablepage

	modeladmin/index

	searchpromotions

	table_block

	Management commands
	publish_scheduled_pages

	fixtree

	move_pages

	update_index

	wagtail_update_index

	search_garbage_collect

	Hooks
	Admin modules

	Editor interface

	Editor workflow

	Admin workflow

	Choosers

	Page explorer

	Page serving

	Document serving

	Signals
	page_published

	page_unpublished

	Settings
	Site Name

	Append Slash

	Search

	Embeds

	Dashboard

	Images

	Documents

	Password Management

	Email Notifications

	Wagtail update notifications

	Private pages / documents

	Login page

	Case-Insensitive Tags

	Multi-word tags

	Tag limit

	Unicode Page Slugs

	Auto update preview

	Custom User Edit Forms

	Usage for images, documents and snippets

	Date and DateTime inputs

	Time zones

	Admin languages

	Static files

	API Settings

	Frontend cache

	Rich text

	Page locking

	The project template
	The “home” app

	Default templates and static files

	Django settings

	Dockerfile

 Pages

Pages

Wagtail requires a little careful setup to define the types of content that you want to present through your website. The basic unit of content in Wagtail is the Page, and all of your page-level content will inherit basic webpage-related properties from it. But for the most part, you will be defining content yourself, through the construction of Django models using Wagtail’s Page as a base.

Wagtail organizes content created from your models in a tree, which can have any structure and combination of model objects in it. Wagtail doesn’t prescribe ways to organize and interrelate your content, but here we’ve sketched out some strategies for organizing your models.

The presentation of your content, the actual webpages, includes the normal use of the Django template system. We’ll cover additional functionality that Wagtail provides at the template level later on.

	Theory
	Introduction to Trees

	Anatomy of a Wagtail Request

	Scheduled Publishing

	Recipes
	Overriding the serve() Method

	Adding Endpoints with Custom route() Methods

	Tagging

	Have redirects created automatically when changing page slug

	Available panel types
	FieldPanel

	StreamFieldPanel

	MultiFieldPanel

	InlinePanel

	FieldRowPanel

	HelpPanel

	PageChooserPanel

	ImageChooserPanel

	FormSubmissionsPanel

	DocumentChooserPanel

	SnippetChooserPanel

	Full-Width Input

	Titles

	Required Fields

	Hiding Fields

	Model Reference
	Page

	Site

	PageRevision

	GroupPagePermission

	PageViewRestriction

	Orderable (abstract)

	Page QuerySet reference
	Examples

	Reference

 Theory

Theory

Introduction to Trees

If you’re unfamiliar with trees as an abstract data type, you might want to review the concepts involved. [https://en.wikipedia.org/wiki/Tree_(data_structure)]

As a web developer, though, you probably already have a good understanding of trees as filesystem directories or paths. Wagtail pages can create the same structure, as each page in the tree has its own URL path, like so:

/
 people/
 nien-nunb/
 laura-roslin/
 events/
 captain-picard-day/
 winter-wrap-up/

The Wagtail admin interface uses the tree to organize content for editing, letting you navigate up and down levels in the tree through its Explorer menu. This method of organization is a good place to start in thinking about your own Wagtail models.

Nodes and Leaves

It might be handy to think of the Page-derived models you want to create as being one of two node types: parents and leaves. Wagtail isn’t prescriptive in this approach, but it’s a good place to start if you’re not experienced in structuring your own content types.

Nodes

Parent nodes on the Wagtail tree probably want to organize and display a browse-able index of their descendants. A blog, for instance, needs a way to show a list of individual posts.

A Parent node could provide its own function returning its descendant objects.

class EventPageIndex(Page):
 # ...
 def events(self):
 # Get list of live event pages that are descendants of this page
 events = EventPage.objects.live().descendant_of(self)

 # Filter events list to get ones that are either
 # running now or start in the future
 events = events.filter(date_from__gte=date.today())

 # Order by date
 events = events.order_by('date_from')

 return events

This example makes sure to limit the returned objects to pieces of content which make sense, specifically ones which have been published through Wagtail’s admin interface (live()) and are children of this node (descendant_of(self)). By setting a subpage_types class property in your model, you can specify which models are allowed to be set as children, and by setting a parent_page_types class property, you can specify which models are allowed to be parents of this page model. Wagtail will allow any Page-derived model by default. Regardless, it’s smart for a parent model to provide an index filtered to make sense.

Leaves

Leaves are the pieces of content itself, a page which is consumable, and might just consist of a bunch of properties. A blog page leaf might have some body text and an image. A person page leaf might have a photo, a name, and an address.

It might be helpful for a leaf to provide a way to back up along the tree to a parent, such as in the case of breadcrumbs navigation. The tree might also be deep enough that a leaf’s parent won’t be included in general site navigation.

The model for the leaf could provide a function that traverses the tree in the opposite direction and returns an appropriate ancestor:

class EventPage(Page):
 # ...
 def event_index(self):
 # Find closest ancestor which is an event index
 return self.get_ancestors().type(EventIndexPage).last()

If defined, subpage_types and parent_page_types will also limit the parent models allowed to contain a leaf. If not, Wagtail will allow any combination of parents and leafs to be associated in the Wagtail tree. Like with index pages, it’s a good idea to make sure that the index is actually of the expected model to contain the leaf.

Other Relationships

Your Page-derived models might have other interrelationships which extend the basic Wagtail tree or depart from it entirely. You could provide functions to navigate between siblings, such as a “Next Post” link on a blog page (post->post->post). It might make sense for subtrees to interrelate, such as in a discussion forum (forum->post->replies) Skipping across the hierarchy might make sense, too, as all objects of a certain model class might interrelate regardless of their ancestors (events = EventPage.objects.all). It’s largely up to the models to define their interrelations, the possibilities are really endless.

Anatomy of a Wagtail Request

For going beyond the basics of model definition and interrelation, it might help to know how Wagtail handles requests and constructs responses. In short, it goes something like:

	Django gets a request and routes through Wagtail’s URL dispatcher definitions

	Wagtail checks the hostname of the request to determine which Site record will handle this request.

	Starting from the root page of that site, Wagtail traverses the page tree, calling the route() method and letting each page model decide whether it will handle the request itself or pass it on to a child page.

	The page responsible for handling the request returns a RouteResult object from route(), which identifies the page along with any additional args/kwargs to be passed to serve().

	Wagtail calls serve(), which constructs a context using get_context()

	serve() finds a template to pass it to using get_template()

	A response object is returned by serve() and Django responds to the requester.

You can apply custom behaviour to this process by overriding Page class methods such as route() and serve() in your own models. For examples, see Recipes.

Scheduled Publishing

Page publishing can be scheduled through the Go live date/time feature in the Settings tab of the Edit page. This allows you to set set up initial page publishing or a page update in advance.
In order for pages to be published at the scheduled time you should set up the publish_scheduled_pages management command.

The basic workflow is as follows:

	Scheduling a revision for a page that is not currently live means that page will go live when the scheduled time comes.

	Scheduling a revision for a page that is already live means that revision will be published when the time comes.

	If page has a scheduled revision and you set another revision to publish immediately, the scheduled revision will be unscheduled.

The Revisions view for a given page will show which revision is scheduled and when it is scheduled for. A scheduled revision in the list will also provide an Unschedule button to cancel it.

 Recipes

Recipes

Overriding the serve() Method

Wagtail defaults to serving Page-derived models by passing a reference to the page object to a Django HTML template matching the model’s name, but suppose you wanted to serve something other than HTML? You can override the serve() method provided by the Page class and handle the Django request and response more directly.

Consider this example from the Wagtail demo site’s models.py, which serves an EventPage object as an iCal file if the format variable is set in the request:

class EventPage(Page):
 ...

 def serve(self, request):
 if "format" in request.GET:
 if request.GET['format'] == 'ical':
 # Export to ical format
 response = HttpResponse(
 export_event(self, 'ical'),
 content_type='text/calendar',
)
 response['Content-Disposition'] = 'attachment; filename=' + self.slug + '.ics'
 return response
 else:
 # Unrecognised format error
 message = 'Could not export event\n\nUnrecognised format: ' + request.GET['format']
 return HttpResponse(message, content_type='text/plain')
 else:
 # Display event page as usual
 return super().serve(request)

serve() takes a Django request object and returns a Django response object. Wagtail returns a TemplateResponse object with the template and context which it generates, which allows middleware to function as intended, so keep in mind that a simpler response object like a HttpResponse will not receive these benefits.

With this strategy, you could use Django or Python utilities to render your model in JSON or XML or any other format you’d like.

Adding Endpoints with Custom route() Methods

Note

A much simpler way of adding more endpoints to pages is provided by the routable_page module.

Wagtail routes requests by iterating over the path components (separated with a forward slash /), finding matching objects based on their slug, and delegating further routing to that object’s model class. The Wagtail source is very instructive in figuring out what’s happening. This is the default route() method of the Page class:

class Page(...):
 ...

 def route(self, request, path_components):
 if path_components:
 # request is for a child of this page
 child_slug = path_components[0]
 remaining_components = path_components[1:]

 # find a matching child or 404
 try:
 subpage = self.get_children().get(slug=child_slug)
 except Page.DoesNotExist:
 raise Http404

 # delegate further routing
 return subpage.specific.route(request, remaining_components)

 else:
 # request is for this very page
 if self.live:
 # Return a RouteResult that will tell Wagtail to call
 # this page's serve() method
 return RouteResult(self)
 else:
 # the page matches the request, but isn't published, so 404
 raise Http404

route() takes the current object (self), the request object, and a list of the remaining path_components from the request URL. It either continues delegating routing by calling route() again on one of its children in the Wagtail tree, or ends the routing process by returning a RouteResult object or raising a 404 error.

The RouteResult object (defined in wagtail.core.url_routing) encapsulates all the information Wagtail needs to call a page’s serve() method and return a final response: this information consists of the page object, and any additional args/kwargs to be passed to serve().

By overriding the route() method, we could create custom endpoints for each object in the Wagtail tree. One use case might be using an alternate template when encountering the print/ endpoint in the path. Another might be a REST API which interacts with the current object. Just to see what’s involved, lets make a simple model which prints out all of its child path components.

First, models.py:

from django.shortcuts import render
from wagtail.core.url_routing import RouteResult
from django.http.response import Http404
from wagtail.core.models import Page

...

class Echoer(Page):

 def route(self, request, path_components):
 if path_components:
 # tell Wagtail to call self.serve() with an additional 'path_components' kwarg
 return RouteResult(self, kwargs={'path_components': path_components})
 else:
 if self.live:
 # tell Wagtail to call self.serve() with no further args
 return RouteResult(self)
 else:
 raise Http404

 def serve(self, path_components=[]):
 return render(request, self.template, {
 'page': self,
 'echo': ' '.join(path_components),
 })

This model, Echoer, doesn’t define any properties, but does subclass Page so objects will be able to have a custom title and slug. The template just has to display our {{ echo }} property.

Now, once creating a new Echoer page in the Wagtail admin titled “Echo Base,” requests such as:

http://127.0.0.1:8000/echo-base/tauntaun/kennel/bed/and/breakfast/

Will return:

tauntaun kennel bed and breakfast

Be careful if you’re introducing new required arguments to the serve() method - Wagtail still needs to be able to display a default view of the page for previewing and moderation, and by default will attempt to do this by calling serve() with a request object and no further arguments. If your serve() method does not accept that as a method signature, you will need to override the page’s serve_preview() method to call serve() with suitable arguments:

def serve_preview(self, request, mode_name):
 return self.serve(request, color='purple')

Tagging

Wagtail provides tagging capability through the combination of two django modules, taggit and modelcluster. taggit provides a model for tags which is extended by modelcluster, which in turn provides some magical database abstraction which makes drafts and revisions possible in Wagtail. It’s a tricky recipe, but the net effect is a many-to-many relationship between your model and a tag class reserved for your model.

Using an example from the Wagtail demo site, here’s what the tag model and the relationship field looks like in models.py:

from modelcluster.fields import ParentalKey
from modelcluster.contrib.taggit import ClusterTaggableManager
from taggit.models import TaggedItemBase

class BlogPageTag(TaggedItemBase):
 content_object = ParentalKey('demo.BlogPage', on_delete=models.CASCADE, related_name='tagged_items')

class BlogPage(Page):
 ...
 tags = ClusterTaggableManager(through=BlogPageTag, blank=True)

 promote_panels = Page.promote_panels + [
 ...
 FieldPanel('tags'),
]

Wagtail’s admin provides a nice interface for inputting tags into your content, with typeahead tag completion and friendly tag icons.

Now that we have the many-to-many tag relationship in place, we can fit in a way to render both sides of the relation. Here’s more of the Wagtail demo site models.py, where the index model for BlogPage is extended with logic for filtering the index by tag:

from django.shortcuts import render

class BlogIndexPage(Page):
 ...
 def serve(self, request):
 # Get blogs
 blogs = BlogPage.objects.child_of(self).live()

 # Filter by tag
 tag = request.GET.get('tag')
 if tag:
 blogs = blogs.filter(tags__name=tag)

 return render(request, self.template, {
 'page': self,
 'blogs': blogs,
 })

Here, blogs.filter(tags__name=tag) invokes a reverse Django QuerySet filter on the BlogPageTag model to optionally limit the BlogPage objects sent to the template for rendering. Now, lets render both sides of the relation by showing the tags associated with an object and a way of showing all of the objects associated with each tag. This could be added to the blog_page.html template:

{% for tag in page.tags.all %}
 {{ tag }}
{% endfor %}

Iterating through page.tags.all will display each tag associated with page, while the link(s) back to the index make use of the filter option added to the BlogIndexPage model. A Django query could also use the tagged_items related name field to get BlogPage objects associated with a tag.

This is just one possible way of creating a taxonomy for Wagtail objects. With all of the components for a taxonomy available through Wagtail, you should be able to fulfil even the most exotic taxonomic schemes.

Have redirects created automatically when changing page slug

You may want redirects created automatically when a url gets changed in the admin so as to avoid broken links. You can add something like the following block to a wagtail_hooks.py file within one of your project’s apps.

from wagtail.core import hooks
from wagtail.contrib.redirects.models import Redirect

Create redirect when editing slugs
@hooks.register('before_edit_page')
def create_redirect_on_slug_change(request, page):
 if request.method == 'POST':
 if page.slug != request.POST['slug']:
 Redirect.objects.create(
 old_path=page.url[:-1],
 site=page.get_site(),
 redirect_page=page
)

Note: This does not work in some cases e.g. when you redirect a page, create a new page in that url and then move the new one. It should be helpful in most cases however.

 Available panel types

Available panel types

FieldPanel

	
class wagtail.admin.edit_handlers.FieldPanel(field_name, classname=None, widget=None)

	This is the panel used for basic Django field types.

	
field_name

	This is the name of the class property used in your model definition.

	
classname

	This is a string of optional CSS classes given to the panel which are used in formatting and scripted interactivity. By default, panels are formatted as inset fields.

The CSS class full can be used to format the panel so it covers the full width of the Wagtail page editor.

The CSS class title can be used to give the field a larger text size, suitable for representing page titles and section headings.

	
widget(optional)

	This parameter allows you to specify a Django form widget [https://docs.djangoproject.com/en/stable/ref/forms/widgets/] to use instead of the default widget for this field type.

StreamFieldPanel

	
class wagtail.admin.edit_handlers.StreamFieldPanel(field_name, classname=None, widget=None)

	This is the panel used for Wagtail’s StreamField type (see Freeform page content using StreamField).

	
FieldPanel.field_name

	This is the name of the class property used in your model definition.

	
FieldPanel.classname(optional)

	This is a string of optional CSS classes given to the panel which are used in formatting and scripted interactivity. By default, panels are formatted as inset fields.

The CSS class full can be used to format the panel so it covers the full width of the Wagtail page editor.

MultiFieldPanel

	
class wagtail.admin.edit_handlers.MultiFieldPanel(children, heading="", classname=None)

	This panel condenses several FieldPanel s or choosers, from a list or tuple, under a single heading string.

	
children

	A list or tuple of child panels

	
heading

	A heading for the fields

Collapsing MultiFieldPanels to save space

By default, MultiFieldPanel s are expanded and not collapsible. Adding collapsible to classname will enable the collapse control. Adding both collapsible and collapsed to the classname parameter will load the editor page with the MultiFieldPanel collapsed under its heading.

content_panels = [
 MultiFieldPanel(
 [
 ImageChooserPanel('cover'),
 DocumentChooserPanel('book_file'),
 PageChooserPanel('publisher'),
],
 heading="Collection of Book Fields",
 classname="collapsible collapsed"
),
]

InlinePanel

	
class wagtail.admin.edit_handlers.InlinePanel(relation_name, panels=None, classname='', heading='', label='', help_text='', min_num=None, max_num=None)

	This panel allows for the creation of a “cluster” of related objects over a join to a separate model, such as a list of related links or slides to an image carousel.

This is a powerful but complex feature which will take some space to cover, so we’ll skip over it for now. For a full explanation on the usage of InlinePanel, see Inline Panels and Model Clusters.

FieldRowPanel

	
class wagtail.admin.edit_handlers.FieldRowPanel(children, classname=None)

	This panel creates a columnar layout in the editing interface, where each of the child Panels appears alongside each other rather than below.

Use of FieldRowPanel particularly helps reduce the “snow-blindness” effect of seeing so many fields on the page, for complex models. It also improves the perceived association between fields of a similar nature. For example if you created a model representing an “Event” which had a starting date and ending date, it may be intuitive to find the start and end date on the same “row”.

By default, the panel is divided into equal-width columns, but this can be overridden by adding col* class names to each of the child Panels of the FieldRowPanel. The Wagtail editing interface is laid out using a grid system, in which the maximum width of the editor is 12 columns. Classes col1-col12 can be applied to each child of a FieldRowPanel. The class col3 will ensure that field appears 3 columns wide or a quarter the width. col4 would cause the field to be 4 columns wide, or a third the width.

	
children

	A list or tuple of child panels to display on the row

	
classname

	A class to apply to the FieldRowPanel as a whole

HelpPanel

	
class wagtail.admin.edit_handlers.HelpPanel(content='', template='wagtailadmin/edit_handlers/help_panel.html', heading='', classname='')

	
	
content

	HTML string that gets displayed in the panel.

	
template

	Path to a template rendering the full panel HTML.

	
heading

	A heading for the help content.

	
classname

	String of CSS classes given to the panel which are used in formatting and scripted interactivity.

PageChooserPanel

	
class wagtail.admin.edit_handlers.PageChooserPanel(field_name, page_type=None, can_choose_root=False)

	You can explicitly link Page-derived models together using the Page model and PageChooserPanel.

from wagtail.core.models import Page
from wagtail.admin.edit_handlers import PageChooserPanel

class BookPage(Page):
 related_page = models.ForeignKey(
 'wagtailcore.Page',
 null=True,
 blank=True,
 on_delete=models.SET_NULL,
 related_name='+',
)

 content_panels = Page.content_panels + [
 PageChooserPanel('related_page', 'demo.PublisherPage'),
]

PageChooserPanel takes one required argument, the field name. Optionally, specifying a page type (in the form of an "appname.modelname" string) will filter the chooser to display only pages of that type. A list or tuple of page types can also be passed in, to allow choosing a page that matches any of those page types:

PageChooserPanel('related_page', ['demo.PublisherPage', 'demo.AuthorPage'])

Passing can_choose_root=True will allow the editor to choose the tree root as a page. Normally this would be undesirable, since the tree root is never a usable page, but in some specialised cases it may be appropriate; for example, a page with an automatic “related articles” feed could use a PageChooserPanel to select which subsection articles will be taken from, with the root corresponding to ‘everywhere’.

ImageChooserPanel

	
class wagtail.images.edit_handlers.ImageChooserPanel(field_name)

	Wagtail includes a unified image library, which you can access in your models through the Image model and the ImageChooserPanel chooser. Here’s how:

from wagtail.images.models import Image
from wagtail.images.edit_handlers import ImageChooserPanel

class BookPage(Page):
 cover = models.ForeignKey(
 'wagtailimages.Image',
 null=True,
 blank=True,
 on_delete=models.SET_NULL,
 related_name='+'
)

 content_panels = Page.content_panels + [
 ImageChooserPanel('cover'),
]

Django’s default behaviour is to “cascade” deletions through a ForeignKey relationship, which may not be what you want. This is why the null [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.Field.null], blank [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.Field.blank], and on_delete [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.ForeignKey.on_delete] parameters should be set to allow for an empty field. ImageChooserPanel takes only one argument: the name of the field.

Displaying Image objects in a template requires the use of a template tag. See Using images in templates.

FormSubmissionsPanel

	
class wagtail.contrib.forms.edit_handlers.FormSubmissionsPanel

	This panel adds a single, read-only section in the edit interface for pages implementing the AbstractForm model.
It includes the number of total submissions for the given form and also a link to the listing of submissions.

from wagtail.contrib.forms.models import AbstractForm
from wagtail.contrib.forms.edit_handlers import FormSubmissionsPanel

class ContactFormPage(AbstractForm):
 content_panels = [
 FormSubmissionsPanel(),
]

DocumentChooserPanel

	
class wagtail.documents.edit_handlers.DocumentChooserPanel(field_name)

	For files in other formats, Wagtail provides a generic file store through the Document model:

from wagtail.documents.models import Document
from wagtail.documents.edit_handlers import DocumentChooserPanel

class BookPage(Page):
 book_file = models.ForeignKey(
 'wagtaildocs.Document',
 null=True,
 blank=True,
 on_delete=models.SET_NULL,
 related_name='+'
)

 content_panels = Page.content_panels + [
 DocumentChooserPanel('book_file'),
]

As with images, Wagtail documents should also have the appropriate extra parameters to prevent cascade deletions across a ForeignKey relationship. DocumentChooserPanel takes only one argument: the name of the field.

SnippetChooserPanel

	
class wagtail.snippets.edit_handlers.SnippetChooserPanel(field_name, snippet_type=None)

	Snippets are vanilla Django models you create yourself without a Wagtail-provided base class. A chooser, SnippetChooserPanel, is provided which takes the field name as an argument.

from wagtail.snippets.edit_handlers import SnippetChooserPanel

class BookPage(Page):
 advert = models.ForeignKey(
 'demo.Advert',
 null=True,
 blank=True,
 on_delete=models.SET_NULL,
 related_name='+'
)

 content_panels = Page.content_panels + [
 SnippetChooserPanel('advert'),
]

See Snippets for more information.

Built-in Fields and Choosers

Django’s field types are automatically recognised and provided with an appropriate widget for input. Just define that field the normal Django way and pass the field name into FieldPanel when defining your panels. Wagtail will take care of the rest.

Here are some Wagtail-specific types that you might include as fields in your models.

Field Customisation

By adding CSS classes to your panel definitions or adding extra parameters to your field definitions, you can control much of how your fields will display in the Wagtail page editing interface. Wagtail’s page editing interface takes much of its behaviour from Django’s admin, so you may find many options for customisation covered there. (See Django model field reference [https://docs.djangoproject.com/en/stable/ref/models/fields/]).

Full-Width Input

Use classname="full" to make a field (input element) stretch the full width of the Wagtail page editor. This will not work if the field is encapsulated in a MultiFieldPanel, which places its child fields into a formset.

Titles

Use classname="title" to make Page’s built-in title field stand out with more vertical padding.

Required Fields

To make input or chooser selection mandatory for a field, add blank=False [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.Field.blank] to its model definition.

Hiding Fields

Without a panel definition, a default form field (without label) will be used to represent your fields. If you intend to hide a field on the Wagtail page editor, define the field with editable=False [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.Field.editable].

Inline Panels and Model Clusters

The django-modelcluster module allows for streamlined relation of extra models to a Wagtail page via a ForeignKey-like relationship called ParentalKey. Normally, your related objects “cluster” would need to be created beforehand (or asynchronously) before being linked to a Page; however, objects related to a Wagtail page via ParentalKey can be created on-the-fly and saved to a draft revision of a Page object.

Let’s look at the example of adding related links to a Page-derived model. We want to be able to add as many as we like, assign an order, and do all of this without leaving the page editing screen.

from wagtail.core.models import Orderable, Page
from modelcluster.fields import ParentalKey

The abstract model for related links, complete with panels
class RelatedLink(models.Model):
 title = models.CharField(max_length=255)
 link_external = models.URLField("External link", blank=True)

 panels = [
 FieldPanel('title'),
 FieldPanel('link_external'),
]

 class Meta:
 abstract = True

The real model which combines the abstract model, an
Orderable helper class, and what amounts to a ForeignKey link
to the model we want to add related links to (BookPage)
class BookPageRelatedLinks(Orderable, RelatedLink):
 page = ParentalKey('demo.BookPage', on_delete=models.CASCADE, related_name='related_links')

class BookPage(Page):
 # ...

 content_panels = Page.content_panels + [
 InlinePanel('related_links', label="Related Links"),
]

The RelatedLink class is a vanilla Django abstract model. The BookPageRelatedLinks model extends it with capability for being ordered in the Wagtail interface via the Orderable class as well as adding a page property which links the model to the BookPage model we’re adding the related links objects to. Finally, in the panel definitions for BookPage, we’ll add an InlinePanel to provide an interface for it all. Let’s look again at the parameters that InlinePanel accepts:

InlinePanel(relation_name, panels=None, heading='', label='', help_text='', min_num=None, max_num=None)

The relation_name is the related_name label given to the cluster’s ParentalKey relation. You can add the panels manually or make them part of the cluster model. heading and help_text provide a heading and caption, respectively, for the Wagtail editor. label sets the text on the add button, and is used as the heading when heading is not present. Finally, min_num and max_num allow you to set the minimum/maximum number of forms that the user must submit.

For another example of using model clusters, see Tagging

For more on django-modelcluster, visit the django-modelcluster github project page [https://github.com/torchbox/django-modelcluster].

 Model Reference

Model Reference

This document contains reference information for the model classes inside the wagtailcore module.

Page

Database fields

	
class wagtail.core.models.Page

	
	
title

	(text)

Human-readable title of the page.

	
draft_title

	(text)

Human-readable title of the page, incorporating any changes that have been made in a draft edit (in contrast to the title field, which for published pages will be the title as it exists in the current published version).

	
slug

	(text)

This is used for constructing the page’s URL.

For example: http://domain.com/blog/[my-slug]/

	
content_type

	(foreign key to django.contrib.contenttypes.models.ContentType)

A foreign key to the ContentType [https://docs.djangoproject.com/en/stable/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType] object that represents the specific model of this page.

	
live

	(boolean)

A boolean that is set to True if the page is published.

Note: this field defaults to True meaning that any pages that are created programmatically will be published by default.

	
has_unpublished_changes

	(boolean)

A boolean that is set to True when the page is either in draft or published with draft changes.

	
owner

	(foreign key to user model)

A foreign key to the user that created the page.

	
first_published_at

	(date/time)

The date/time when the page was first published.

	
last_published_at

	(date/time)

The date/time when the page was last published.

	
seo_title

	(text)

Alternate SEO-crafted title, for use in the page’s <title> HTML tag.

	
search_description

	(text)

SEO-crafted description of the content, used for search indexing. This is also suitable for the page’s <meta name="description"> HTML tag.

	
show_in_menus

	(boolean)

Toggles whether the page should be included in site-wide menus.

This is used by the in_menu() QuerySet filter.

Defaults to False and can be overridden on the model with show_in_menus_default = True.

Note

To set the global default for all pages, set Page.show_in_menus_default = True once where you first import the Page model.

	
locked

	(boolean)

When set to True, the Wagtail editor will not allow any users to edit
the content of the page.

If locked_by is also set, only that user can edit the page.

	
locked_by

	(foreign key to user model)

The user who has currently locked the page. Only this user can edit the page.

If this is None when locked is True, nobody can edit the page.

	
locked_at

	(date/time)

The date/time when the page was locked.

Methods and properties

In addition to the model fields provided, Page has many properties and methods that you may wish to reference, use, or override in creating your own models.

Note

See also django-treebeard [https://django-treebeard.readthedocs.io/en/latest/index.html]’s node API [https://django-treebeard.readthedocs.io/en/latest/api.html]. Page is a subclass of materialized path tree [https://django-treebeard.readthedocs.io/en/latest/mp_tree.html] nodes.

	
class wagtail.core.models.Page

	
	
specific

	Return this page in its most specific subclassed form.

	
specific_class

	Return the class that this page would be if instantiated in its
most specific form

	
get_url(request=None, current_site=None)

	Return the ‘most appropriate’ URL for referring to this page from the pages we serve,
within the Wagtail backend and actual website templates;
this is the local URL (starting with ‘/’) if we’re only running a single site
(i.e. we know that whatever the current page is being served from, this link will be on the
same domain), and the full URL (with domain) if not.
Return None if the page is not routable.

Accepts an optional but recommended request keyword argument that, if provided, will
be used to cache site-level URL information (thereby avoiding repeated database / cache
lookups) and, via the request.site attribute, determine whether a relative or full URL
is most appropriate.

	
full_url

	Return the full URL (including protocol / domain) to this page, or None if it is not routable

	
relative_url(current_site, request=None)

	Return the ‘most appropriate’ URL for this page taking into account the site we’re currently on;
a local URL if the site matches, or a fully qualified one otherwise.
Return None if the page is not routable.

Accepts an optional but recommended request keyword argument that, if provided, will
be used to cache site-level URL information (thereby avoiding repeated database / cache
lookups).

	
get_site()

	Return the Site object that this page belongs to.

	
get_url_parts(request=None)

	Determine the URL for this page and return it as a tuple of
(site_id, site_root_url, page_url_relative_to_site_root).
Return None if the page is not routable.

This is used internally by the full_url, url, relative_url
and get_site properties and methods; pages with custom URL routing
should override this method in order to have those operations return
the custom URLs.

Accepts an optional keyword argument request, which may be used
to avoid repeated database / cache lookups. Typically, a page model
that overrides get_url_parts should not need to deal with
request directly, and should just pass it to the original method
when calling super.

	
route(request, path_components)

	

	
serve(request, *args, **kwargs)

	

	
get_context(request, *args, **kwargs)

	

	
get_template(request, *args, **kwargs)

	

	
get_admin_display_title()

	Return the title for this page as it should appear in the admin backend;
override this if you wish to display extra contextual information about the page,
such as language. By default, returns draft_title.

	
preview_modes

	A list of (internal_name, display_name) tuples for the modes in which
this page can be displayed for preview/moderation purposes. Ordinarily a page
will only have one display mode, but subclasses of Page can override this -
for example, a page containing a form might have a default view of the form,
and a post-submission ‘thankyou’ page

	
serve_preview(request, mode_name)

	Return an HTTP response for use in page previews. Normally this would be equivalent
to self.serve(request), since we obviously want the preview to be indicative of how
it looks on the live site. However, there are a couple of cases where this is not
appropriate, and custom behaviour is required:

1) The page has custom routing logic that derives some additional required
args/kwargs to be passed to serve(). The routing mechanism is bypassed when
previewing, so there’s no way to know what args we should pass. In such a case,
the page model needs to implement its own version of serve_preview.

2) The page has several different renderings that we would like to be able to see
when previewing - for example, a form page might have one rendering that displays
the form, and another rendering to display a landing page when the form is posted.
This can be done by setting a custom preview_modes list on the page model -
Wagtail will allow the user to specify one of those modes when previewing, and
pass the chosen mode_name to serve_preview so that the page model can decide how
to render it appropriately. (Page models that do not specify their own preview_modes
list will always receive an empty string as mode_name.)

Any templates rendered during this process should use the ‘request’ object passed
here - this ensures that request.user and other properties are set appropriately for
the wagtail user bar to be displayed. This request will always be a GET.

	
get_parent(update=False)

	
	Returns

	the parent node of the current node object.
Caches the result in the object itself to help in loops.

	
get_ancestors(inclusive=False)

	Returns a queryset of the current page’s ancestors, starting at the root page
and descending to the parent, or to the current page itself if inclusive is true.

	
get_descendants(inclusive=False)

	Returns a queryset of all pages underneath the current page, any number of levels deep.
If inclusive is true, the current page itself is included in the queryset.

	
get_siblings(inclusive=True)

	Returns a queryset of all other pages with the same parent as the current page.
If inclusive is true, the current page itself is included in the queryset.

	
search_fields

	A list of fields to be indexed by the search engine. See Search docs Indexing extra fields

	
subpage_types

	A whitelist of page models which can be created as children of this page type. For example, a BlogIndex page might allow a BlogPage as a child, but not a JobPage:

class BlogIndex(Page):
 subpage_types = ['mysite.BlogPage', 'mysite.BlogArchivePage']

The creation of child pages can be blocked altogether for a given page by setting it’s subpage_types attribute to an empty array:

class BlogPage(Page):
 subpage_types = []

	
parent_page_types

	A whitelist of page models which are allowed as parent page types. For example, a BlogPage may only allow itself to be created below the BlogIndex page:

class BlogPage(Page):
 parent_page_types = ['mysite.BlogIndexPage']

Pages can block themselves from being created at all by setting parent_page_types to an empty array (this is useful for creating unique pages that should only be created once):

class HiddenPage(Page):
 parent_page_types = []

	
classmethod can_exist_under(parent)

	Checks if this page type can exist as a subpage under a parent page
instance.

See also: Page.can_create_at() and Page.can_move_to()

	
classmethod can_create_at(parent)

	Checks if this page type can be created as a subpage under a parent
page instance.

	
can_move_to(parent)

	Checks if this page instance can be moved to be a subpage of a parent
page instance.

	
password_required_template

	Defines which template file should be used to render the login form for Protected pages using this model. This overrides the default, defined using PASSWORD_REQUIRED_TEMPLATE in your settings. See Private pages

	
is_creatable

	Controls if this page can be created through the Wagtail administration. Defaults to True, and is not inherited by subclasses. This is useful when using multi-table inheritance [https://docs.djangoproject.com/en/stable/topics/db/models/#multi-table-inheritance], to stop the base model from being created as an actual page.

	
max_count

	Controls the maximum number of pages of this type that can be created through the Wagtail administration interface. This is useful when needing “allow at most 3 of these pages to exist”, or for singleton pages.

	
max_count_per_parent

	Controls the maximum number of pages of this type that can be created under any one parent page.

	
exclude_fields_in_copy

	An array of field names that will not be included when a Page is copied.
Useful when you have relations that do not use ClusterableModel or should not be copied.

class BlogPage(Page):
 exclude_fields_in_copy = ['special_relation', 'custom_uuid']

The following fields will always be excluded in a copy - [‘id’, ‘path’, ‘depth’, ‘numchild’, ‘url_path’, ‘path’].

	
base_form_class

	The form class used as a base for editing Pages of this type in the Wagtail page editor.
This attribute can be set on a model to customise the Page editor form.
Forms must be a subclass of WagtailAdminPageForm.
See Customising generated forms for more information.

	
with_content_json(content_json)

	Returns a new version of the page with field values updated to reflect changes
in the provided content_json (which usually comes from a previously-saved
page revision).

Certain field values are preserved in order to prevent errors if the returned
page is saved, such as id, content_type and some tree-related values.
The following field values are also preserved, as they are considered to be
meaningful to the page as a whole, rather than to a specific revision:

	draft_title

	live

	has_unpublished_changes

	owner

	locked

	locked_by

	locked_at

	latest_revision_created_at

	first_published_at

Site

The Site model is useful for multi-site installations as it allows an administrator to configure which part of the tree to use for each hostname that the server responds on.

This configuration is used by the SiteMiddleware middleware class which checks each request against this configuration and appends the Site object to the Django request object.

Database fields

	
class wagtail.core.models.Site

	
	
hostname

	(text)

This is the hostname of the site, excluding the scheme, port and path.

For example: www.mysite.com

Note

If you’re looking for how to get the root url of a site, use the root_url attribute.

	
port

	(number)

This is the port number that the site responds on.

	
site_name

	(text - optional)

A human-readable name for the site. This is not used by Wagtail itself, but is suitable for use on the site front-end, such as in <title> elements.

For example: Rod's World of Birds

	
root_page

	(foreign key to Page)

This is a link to the root page of the site. This page will be what appears at the / URL on the site and would usually be a homepage.

	
is_default_site

	(boolean)

This is set to True if the site is the default. Only one site can be the default.

The default site is used as a fallback in situations where a site with the required hostname/port couldn’t be found.

Methods and properties

	
class wagtail.core.models.Site

	
	
static find_for_request(request)

	Find the site object responsible for responding to this HTTP
request object. Try:

	unique hostname first

	then hostname and port

	if there is no matching hostname at all, or no matching
hostname:port combination, fall back to the unique default site,
or raise an exception

NB this means that high-numbered ports on an extant hostname may
still be routed to a different hostname which is set as the default

	
root_url

	This returns the URL of the site. It is calculated from the hostname and the port fields.

The scheme part of the URL is calculated based on value of the port field:

	80 = http://

	443 = https://

	Everything else will use the http:// scheme and the port will be appended to the end of the hostname (eg. http://mysite.com:8000/)

	
static get_site_root_paths()

	Return a list of (id, root_path, root_url) tuples, most specific path
first - used to translate url_paths into actual URLs with hostnames

PageRevision

Every time a page is edited a new PageRevision is created and saved to the database. It can be used to find the full history of all changes that have been made to a page and it also provides a place for new changes to be kept before going live.

	Revisions can be created from any Page object by calling its save_revision() method

	The content of the page is JSON-serialised and stored in the content_json field

	You can retrieve a PageRevision as a Page object by calling the as_page_object() method

Database fields

	
class wagtail.core.models.PageRevision

	
	
page

	(foreign key to Page)

	
submitted_for_moderation

	(boolean)

True if this revision is in moderation

	
created_at

	(date/time)

This is the time the revision was created

	
user

	(foreign key to user model)

This links to the user that created the revision

	
content_json

	(text)

This field contains the JSON content for the page at the time the revision was created

Managers

	
class wagtail.core.models.PageRevision

	
	
objects

	This manager is used to retrieve all of the PageRevision objects in the database

Example:

PageRevision.objects.all()

	
submitted_revisions

	This manager is used to retrieve all of the PageRevision objects that are awaiting moderator approval

Example:

PageRevision.submitted_revisions.all()

Methods and properties

	
class wagtail.core.models.PageRevision

	
	
as_page_object()

	This method retrieves this revision as an instance of its Page subclass.

	
approve_moderation()

	Calling this on a revision that’s in moderation will mark it as approved and publish it

	
reject_moderation()

	Calling this on a revision that’s in moderation will mark it as rejected

	
is_latest_revision()

	Returns True if this revision is its page’s latest revision

	
publish()

	Calling this will copy the content of this revision into the live page object. If the page is in draft, it will be published.

GroupPagePermission

Database fields

	
class wagtail.core.models.GroupPagePermission

	
	
group

	(foreign key to django.contrib.auth.models.Group)

	
page

	(foreign key to Page)

	
permission_type

	(choice list)

PageViewRestriction

Database fields

	
class wagtail.core.models.PageViewRestriction

	
	
page

	(foreign key to Page)

	
password

	(text)

Orderable (abstract)

Database fields

	
class wagtail.core.models.Orderable

	
	
sort_order

	(number)

 Page QuerySet reference

Page QuerySet reference

All models that inherit from Page are given some extra QuerySet methods accessible from their .objects attribute.

Examples

	Selecting only live pages

live_pages = Page.objects.live()

	Selecting published EventPages that are descendants of events_index

events = EventPage.objects.live().descendant_of(events_index)

	Getting a list of menu items

This gets a QuerySet of live children of the homepage with ``show_in_menus`` set
menu_items = homepage.get_children().live().in_menu()

Reference

	
class wagtail.core.query.PageQuerySet(model=None, query=None, using=None, hints=None)

	
	
live()

	This filters the QuerySet to only contain published pages.

Example:

published_pages = Page.objects.live()

	
not_live()

	This filters the QuerySet to only contain unpublished pages.

Example:

unpublished_pages = Page.objects.not_live()

	
in_menu()

	This filters the QuerySet to only contain pages that are in the menus.

Example:

Build a menu from live pages that are children of the homepage
menu_items = homepage.get_children().live().in_menu()

Note

To put your page in menus, set the show_in_menus flag to true:

Add 'my_page' to the menu
my_page.show_in_menus = True

	
not_in_menu()

	This filters the QuerySet to only contain pages that are not in the menus.

	
in_site(site)

	This filters the QuerySet to only contain pages within the specified site.

Example:

Get all the EventPages in the current site
site_events = EventPage.objects.in_site(request.site)

	
page(other)

	This filters the QuerySet so it only contains the specified page.

Example:

Append an extra page to a QuerySet
new_queryset = old_queryset | Page.objects.page(page_to_add)

	
not_page(other)

	This filters the QuerySet so it doesn’t contain the specified page.

Example:

Remove a page from a QuerySet
new_queryset = old_queryset & Page.objects.not_page(page_to_remove)

	
descendant_of(other, inclusive=False)

	This filters the QuerySet to only contain pages that descend from the specified page.

If inclusive is set to True, it will also contain the page itself (instead of just its descendants).

Example:

Get EventPages that are under the special_events Page
special_events = EventPage.objects.descendant_of(special_events_index)

Alternative way
special_events = special_events_index.get_descendants()

	
not_descendant_of(other, inclusive=False)

	This filters the QuerySet to not contain any pages that descend from the specified page.

If inclusive is set to True, it will also exclude the specified page.

Example:

Get EventPages that are not under the archived_events Page
non_archived_events = EventPage.objects.not_descendant_of(archived_events_index)

	
child_of(other)

	This filters the QuerySet to only contain pages that are direct children of the specified page.

Example:

Get a list of sections
sections = Page.objects.child_of(homepage)

Alternative way
sections = homepage.get_children()

	
not_child_of(other)

	This filters the QuerySet to not contain any pages that are direct children of the specified page.

	
ancestor_of(other, inclusive=False)

	This filters the QuerySet to only contain pages that are ancestors of the specified page.

If inclusive is set to True, it will also include the specified page.

Example:

Get the current section
current_section = Page.objects.ancestor_of(current_page).child_of(homepage).first()

Alternative way
current_section = current_page.get_ancestors().child_of(homepage).first()

	
not_ancestor_of(other, inclusive=False)

	This filters the QuerySet to not contain any pages that are ancestors of the specified page.

If inclusive is set to True, it will also exclude the specified page.

Example:

Get the other sections
other_sections = Page.objects.not_ancestor_of(current_page).child_of(homepage)

	
parent_of(other)

	This filters the QuerySet to only contain the parent of the specified page.

	
not_parent_of(other)

	This filters the QuerySet to exclude the parent of the specified page.

	
sibling_of(other, inclusive=True)

	This filters the QuerySet to only contain pages that are siblings of the specified page.

By default, inclusive is set to True so it will include the specified page in the results.

If inclusive is set to False, the page will be excluded from the results.

Example:

Get list of siblings
siblings = Page.objects.sibling_of(current_page)

Alternative way
siblings = current_page.get_siblings()

	
not_sibling_of(other, inclusive=True)

	This filters the QuerySet to not contain any pages that are siblings of the specified page.

By default, inclusive is set to True so it will exclude the specified page from the results.

If inclusive is set to False, the page will be included in the results.

	
public()

	This filters the QuerySet to only contain pages that are not in a private section

See: Private pages

Note

This doesn’t filter out unpublished pages. If you want to only have published public pages, use .live().public()

Example:

Find all the pages that are viewable by the public
all_pages = Page.objects.live().public()

	
not_public()

	This filters the QuerySet to only contain pages that are in a private section

	
search(query, fields=None, operator=None, order_by_relevance=True, partial_match=True, backend='default')

	This runs a search query on all the items in the QuerySet

See: Searching QuerySets

Example:

Search future events
results = EventPage.objects.live().filter(date__gt=timezone.now()).search("Hello")

	
type(model)

	This filters the QuerySet to only contain pages that are an instance
of the specified model (including subclasses).

Example:

Find all pages that are of type AbstractEmailForm, or a descendant of it
form_pages = Page.objects.type(AbstractEmailForm)

	
not_type(model)

	This filters the QuerySet to not contain any pages which are an instance of the specified model.

	
exact_type(model)

	This filters the QuerySet to only contain pages that are an instance of the specified model
(matching the model exactly, not subclasses).

Example:

Find all pages that are of the exact type EventPage
event_pages = Page.objects.exact_type(EventPage)

	
not_exact_type(model)

	This filters the QuerySet to not contain any pages which are an instance of the specified model
(matching the model exactly, not subclasses).

Example:

Find all pages that are not of the exact type EventPage (but may be a subclass)
non_event_pages = Page.objects.not_exact_type(EventPage)

	
unpublish()

	This unpublishes all live pages in the QuerySet.

Example:

Unpublish current_page and all of its children
Page.objects.descendant_of(current_page, inclusive=True).unpublish()

	
specific(defer=False)

	This efficiently gets all the specific pages for the queryset, using
the minimum number of queries.

When the “defer” keyword argument is set to True, only the basic page
fields will be loaded and all specific fields will be deferred. It
will still generate a query for each page type though (this may be
improved to generate only a single query in a future release).

Example:

Get the specific instance of all children of the hompage,
in a minimum number of database queries.
homepage.get_children().specific()

See also: Page.specific

	
first_common_ancestor(include_self=False, strict=False)

	Find the first ancestor that all pages in this queryset have in common.
For example, consider a page hierarchy like:

- Home/
 - Foo Event Index/
 - Foo Event Page 1/
 - Foo Event Page 2/
 - Bar Event Index/
 - Bar Event Page 1/
 - Bar Event Page 2/

The common ancestors for some queries would be:

>>> Page.objects\
... .type(EventPage)\
... .first_common_ancestor()
<Page: Home>
>>> Page.objects\
... .type(EventPage)\
... .filter(title__contains='Foo')\
... .first_common_ancestor()
<Page: Foo Event Index>

This method tries to be efficient, but if you have millions of pages
scattered across your page tree, it will be slow.

If include_self is True, the ancestor can be one of the pages in the
queryset:

>>> Page.objects\
... .filter(title__contains='Foo')\
... .first_common_ancestor()
<Page: Foo Event Index>
>>> Page.objects\
... .filter(title__exact='Bar Event Index')\
... .first_common_ancestor()
<Page: Bar Event Index>

A few invalid cases exist: when the queryset is empty, when the root
Page is in the queryset and include_self is False, and when there
are multiple page trees with no common root (a case Wagtail does not
support). If strict is False (the default), then the first root
node is returned in these cases. If strict is True, then a
ObjectDoesNotExist is raised.

 Contrib modules

Contrib modules

Wagtail ships with a variety of extra optional modules.

	Site settings
	Defining settings

	Using the settings

	Form builder
	Usage

	Displaying form submission information

	Index

	Sitemap generator
	Basic configuration

	Setting the hostname

	Customising

	Serving multiple sitemaps

	Frontend cache invalidator
	Setting it up

	Advanced usage

	RoutablePageMixin
	Installation

	The basics

	Reversing URLs

	The RoutablePageMixin class

	The routablepageurl template tag

	ModelAdmin
	Summary of features

	Want to know more about customising ModelAdmin?

	PostgreSQL search engine
	Installation

	Configuration

	Promoted search results
	Installation

	Usage

	TableBlock
	Installation

	Basic Usage

	Advanced Usage

Site settings

Site-wide settings that are editable by administrators in the Wagtail admin.

Form builder

Allows forms to be created by admins and provides an interface for browsing form submissions.

Sitemap generator

Provides a view that generates a Google XML sitemap of your public Wagtail content.

Frontend cache invalidator

A module for automatically purging pages from a cache (Varnish, Squid, Cloudflare or Cloudfront) when their content is changed.

RoutablePageMixin

Provides a way of embedding Django URLconfs into pages.

ModelAdmin

A module allowing for more customisable representation and management of custom models in Wagtail’s admin area.

Promoted search results

A module for managing “Promoted Search Results”

TableBlock

Provides a TableBlock for adding HTML tables to pages.

 Site settings

Site settings

You can define settings for your site that are editable by administrators in the Wagtail admin. These settings can be accessed in code, as well as in templates.

To use these settings, you must add wagtail.contrib.settings to your INSTALLED_APPS:

INSTALLED_APPS += [
 'wagtail.contrib.settings',
]

Defining settings

Create a model that inherits from BaseSetting, and register it using the register_setting decorator:

from django.db import models
from wagtail.contrib.settings.models import BaseSetting, register_setting

@register_setting
class SocialMediaSettings(BaseSetting):
 facebook = models.URLField(
 help_text='Your Facebook page URL')
 instagram = models.CharField(
 max_length=255, help_text='Your Instagram username, without the @')
 trip_advisor = models.URLField(
 help_text='Your Trip Advisor page URL')
 youtube = models.URLField(
 help_text='Your YouTube channel or user account URL')

A ‘Social media settings’ link will appear in the Wagtail admin ‘Settings’ menu.

Edit handlers

Settings use edit handlers much like the rest of Wagtail. Add a panels setting to your model defining all the edit handlers required:

@register_setting
class ImportantPages(BaseSetting):
 donate_page = models.ForeignKey(
 'wagtailcore.Page', null=True, on_delete=models.SET_NULL, related_name='+')
 sign_up_page = models.ForeignKey(
 'wagtailcore.Page', null=True, on_delete=models.SET_NULL, related_name='+')

 panels = [
 PageChooserPanel('donate_page'),
 PageChooserPanel('sign_up_page'),
]

You can also customize the editor handlers like you would do for Page model
with a custom edit_handler attribute:

from wagtail.admin.edit_handlers import TabbedInterface, ObjectList

@register_setting
class MySettings(BaseSetting):
 # ...
 first_tab_panels = [
 FieldPanel('field_1'),
]
 second_tab_panels = [
 FieldPanel('field_2'),
]

 edit_handler = TabbedInterface([
 ObjectList(first_tab_panels, heading='First tab'),
 ObjectList(second_tab_panels, heading='Second tab'),
])

Appearance

You can change the label used in the menu by changing the verbose_name [https://docs.djangoproject.com/en/stable/ref/models/options/#django.db.models.Options.verbose_name] of your model.

You can add an icon to the menu by passing an ‘icon’ argument to the register_setting decorator:

@register_setting(icon='placeholder')
class SocialMediaSettings(BaseSetting):
 class Meta:
 verbose_name = 'social media accounts'
 ...

For a list of all available icons, please see the UI Styleguide.

Using the settings

Settings are designed to be used both in Python code, and in templates.

Using in Python

If access to a setting is required in the code, the for_site() method will retrieve the setting for the supplied site:

def view(request):
 social_media_settings = SocialMediaSettings.for_site(request.site)
 ...

Using in Django templates

Add the settings context processor to your settings:

TEMPLATES = [
 {
 ...

 'OPTIONS': {
 'context_processors': [
 ...

 'wagtail.contrib.settings.context_processors.settings',
]
 }
 }
]

Then access the settings through {{ settings }}:

{{ settings.app_label.SocialMediaSettings.instagram }}

Note

Replace app_label with the label of the app containing your settings model.

If you are not in a RequestContext, then context processors will not have run, and the settings variable will not be available. To get the settings, use the provided {% get_settings %} template tag. If a request is in the template context, but for some reason it is not a RequestContext, just use {% get_settings %}:

{% load wagtailsettings_tags %}
{% get_settings %}
{{ settings.app_label.SocialMediaSettings.instagram }}

If there is no request available in the template at all, you can use the settings for the default Wagtail site instead:

{% load wagtailsettings_tags %}
{% get_settings use_default_site=True %}
{{ settings.app_label.SocialMediaSettings.instagram }}

Note

You can not reliably get the correct settings instance for the current site from this template tag if the request object is not available. This is only relevant for multisite instances of Wagtail.

Using in Jinja2 templates

Add wagtail.contrib.settings.jinja2tags.settings extension to your Jinja2 settings:

TEMPLATES = [
 # ...
 {
 'BACKEND': 'django.template.backends.jinja2.Jinja2',
 'APP_DIRS': True,
 'OPTIONS': {
 'extensions': [
 # ...
 'wagtail.contrib.settings.jinja2tags.settings',
],
 },
 }
]

Then access the settings through the settings() template function:

{{ settings("app_label.SocialMediaSettings").twitter }}

Note

Replace app_label with the label of the app containing your settings model.

This will look for a request variable in the template context, and find the correct site to use from that. If for some reason you do not have a request available, you can instead use the settings defined for the default site:

{{ settings("app_label.SocialMediaSettings", use_default_site=True).instagram }}

You can store the settings instance in a variable to save some typing, if you have to use multiple values from one model:

{% with social_settings=settings("app_label.SocialMediaSettings") %}
 Follow us on Twitter at @{{ social_settings.twitter }},
 or Instagram at @{{ social_settings.Instagram }}.
{% endwith %}

Or, alternately, using the set tag:

{% set social_settings=settings("app_label.SocialMediaSettings") %}

 Form builder

Form builder

The wagtailforms module allows you to set up single-page forms, such as a ‘Contact us’ form, as pages of a Wagtail site. It provides a set of base models that site implementers can extend to create their own FormPage type with their own site-specific templates. Once a page type has been set up in this way, editors can build forms within the usual page editor, consisting of any number of fields. Form submissions are stored for later retrieval through a new ‘Forms’ section within the Wagtail admin interface; in addition, they can be optionally e-mailed to an address specified by the editor.

Note

wagtailforms is not a replacement for Django’s form support [https://docs.djangoproject.com/en/stable/topics/forms/]. It is designed as a way for page authors to build general-purpose data collection forms without having to write code. If you intend to build a form that assigns specific behaviour to individual fields (such as creating user accounts), or needs a custom HTML layout, you will almost certainly be better served by a standard Django form, where the fields are fixed in code rather than defined on-the-fly by a page author. See the wagtail-form-example project [https://github.com/gasman/wagtail-form-example/commits/master] for an example of integrating a Django form into a Wagtail page.

Usage

Add wagtail.contrib.forms to your INSTALLED_APPS:

INSTALLED_APPS = [
 ...
 'wagtail.contrib.forms',
]

Within the models.py of one of your apps, create a model that extends wagtail.contrib.forms.models.AbstractEmailForm:

from modelcluster.fields import ParentalKey
from wagtail.admin.edit_handlers import (
 FieldPanel, FieldRowPanel,
 InlinePanel, MultiFieldPanel
)
from wagtail.core.fields import RichTextField
from wagtail.contrib.forms.models import AbstractEmailForm, AbstractFormField

class FormField(AbstractFormField):
 page = ParentalKey('FormPage', on_delete=models.CASCADE, related_name='form_fields')

class FormPage(AbstractEmailForm):
 intro = RichTextField(blank=True)
 thank_you_text = RichTextField(blank=True)

 content_panels = AbstractEmailForm.content_panels + [
 FieldPanel('intro', classname="full"),
 InlinePanel('form_fields', label="Form fields"),
 FieldPanel('thank_you_text', classname="full"),
 MultiFieldPanel([
 FieldRowPanel([
 FieldPanel('from_address', classname="col6"),
 FieldPanel('to_address', classname="col6"),
]),
 FieldPanel('subject'),
], "Email"),
]

AbstractEmailForm defines the fields to_address, from_address and subject, and expects form_fields to be defined. Any additional fields are treated as ordinary page content - note that FormPage is responsible for serving both the form page itself and the landing page after submission, so the model definition should include all necessary content fields for both of those views.

If you do not want your form page type to offer form-to-email functionality, you can inherit from AbstractForm instead of AbstractEmailForm, and omit the to_address, from_address and subject fields from the content_panels definition.

You now need to create two templates named form_page.html and form_page_landing.html (where form_page is the underscore-formatted version of the class name). form_page.html differs from a standard Wagtail template in that it is passed a variable form, containing a Django Form object, in addition to the usual page variable. A very basic template for the form would thus be:

{% load wagtailcore_tags %}
<html>
 <head>
 <title>{{ page.title }}</title>
 </head>
 <body>
 <h1>{{ page.title }}</h1>
 {{ page.intro|richtext }}
 <form action="{% pageurl page %}" method="POST">
 {% csrf_token %}
 {{ form.as_p }}
 <input type="submit">
 </form>
 </body>
</html>

form_page_landing.html is a regular Wagtail template, displayed after the user makes a successful form submission, form_submission will available in this template. If you want to dynamically override the landing page template, you can do so with the get_landing_page_template method (in the same way that you would with get_template).

Displaying form submission information

FormSubmissionsPanel can be added to your page’s panel definitions to display the number of form submissions and the time of the most recent submission, along with a quick link to access the full submission data:

from wagtail.contrib.forms.edit_handlers import FormSubmissionsPanel

class FormPage(AbstractEmailForm):
 # ...

 content_panels = AbstractEmailForm.content_panels + [
 FormSubmissionsPanel(),
 FieldPanel('intro', classname="full"),
 # ...
]

Index

	Form builder customisation

 Form builder customisation

Form builder customisation

For a basic usage example see Usage.

Custom related_name for form fields

If you want to change related_name for form fields
(by default AbstractForm and AbstractEmailForm expect form_fields to be defined),
you will need to override the get_form_fields method.
You can do this as shown below.

from modelcluster.fields import ParentalKey
from wagtail.admin.edit_handlers import (
 FieldPanel, FieldRowPanel,
 InlinePanel, MultiFieldPanel
)
from wagtail.core.fields import RichTextField
from wagtail.contrib.forms.models import AbstractEmailForm, AbstractFormField

class FormField(AbstractFormField):
 page = ParentalKey('FormPage', on_delete=models.CASCADE, related_name='custom_form_fields')

class FormPage(AbstractEmailForm):
 intro = RichTextField(blank=True)
 thank_you_text = RichTextField(blank=True)

 content_panels = AbstractEmailForm.content_panels + [
 FieldPanel('intro', classname="full"),
 InlinePanel('custom_form_fields', label="Form fields"),
 FieldPanel('thank_you_text', classname="full"),
 MultiFieldPanel([
 FieldRowPanel([
 FieldPanel('from_address', classname="col6"),
 FieldPanel('to_address', classname="col6"),
]),
 FieldPanel('subject'),
], "Email"),
]

 def get_form_fields(self):
 return self.custom_form_fields.all()

Custom form submission model

If you need to save additional data, you can use a custom form submission model.
To do this, you need to:

	Define a model that extends wagtail.contrib.forms.models.AbstractFormSubmission.

	Override the get_submission_class and process_form_submission methods in your page model.

Example:

import json

from django.conf import settings
from django.core.serializers.json import DjangoJSONEncoder
from django.db import models
from modelcluster.fields import ParentalKey
from wagtail.admin.edit_handlers import (
 FieldPanel, FieldRowPanel,
 InlinePanel, MultiFieldPanel
)
from wagtail.core.fields import RichTextField
from wagtail.contrib.forms.models import AbstractEmailForm, AbstractFormField, AbstractFormSubmission

class FormField(AbstractFormField):
 page = ParentalKey('FormPage', on_delete=models.CASCADE, related_name='form_fields')

class FormPage(AbstractEmailForm):
 intro = RichTextField(blank=True)
 thank_you_text = RichTextField(blank=True)

 content_panels = AbstractEmailForm.content_panels + [
 FieldPanel('intro', classname="full"),
 InlinePanel('form_fields', label="Form fields"),
 FieldPanel('thank_you_text', classname="full"),
 MultiFieldPanel([
 FieldRowPanel([
 FieldPanel('from_address', classname="col6"),
 FieldPanel('to_address', classname="col6"),
]),
 FieldPanel('subject'),
], "Email"),
]

 def get_submission_class(self):
 return CustomFormSubmission

 def process_form_submission(self, form):
 self.get_submission_class().objects.create(
 form_data=json.dumps(form.cleaned_data, cls=DjangoJSONEncoder),
 page=self, user=form.user
)

class CustomFormSubmission(AbstractFormSubmission):
 user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)

Add custom data to CSV export

If you want to add custom data to the CSV export, you will need to:

	Override the get_data_fields method in page model.

	Override get_data in the submission model.

The following example shows how to add a username to the CSV export:

import json

from django.conf import settings
from django.core.serializers.json import DjangoJSONEncoder
from django.db import models
from modelcluster.fields import ParentalKey
from wagtail.admin.edit_handlers import (
 FieldPanel, FieldRowPanel,
 InlinePanel, MultiFieldPanel
)
from wagtail.core.fields import RichTextField
from wagtail.contrib.forms.models import AbstractEmailForm, AbstractFormField, AbstractFormSubmission

class FormField(AbstractFormField):
 page = ParentalKey('FormPage', on_delete=models.CASCADE, related_name='form_fields')

class FormPage(AbstractEmailForm):
 intro = RichTextField(blank=True)
 thank_you_text = RichTextField(blank=True)

 content_panels = AbstractEmailForm.content_panels + [
 FieldPanel('intro', classname="full"),
 InlinePanel('form_fields', label="Form fields"),
 FieldPanel('thank_you_text', classname="full"),
 MultiFieldPanel([
 FieldRowPanel([
 FieldPanel('from_address', classname="col6"),
 FieldPanel('to_address', classname="col6"),
]),
 FieldPanel('subject'),
], "Email"),
]

 def get_data_fields(self):
 data_fields = [
 ('username', 'Username'),
]
 data_fields += super().get_data_fields()

 return data_fields

 def get_submission_class(self):
 return CustomFormSubmission

 def process_form_submission(self, form):
 self.get_submission_class().objects.create(
 form_data=json.dumps(form.cleaned_data, cls=DjangoJSONEncoder),
 page=self, user=form.user
)

class CustomFormSubmission(AbstractFormSubmission):
 user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)

 def get_data(self):
 form_data = super().get_data()
 form_data.update({
 'username': self.user.username,
 })

 return form_data

Note that this code also changes the submissions list view.

Check that a submission already exists for a user

If you want to prevent users from filling in a form more than once,
you need to override the serve method in your page model.

Example:

import json

from django.conf import settings
from django.core.serializers.json import DjangoJSONEncoder
from django.db import models
from django.shortcuts import render
from modelcluster.fields import ParentalKey
from wagtail.admin.edit_handlers import (
 FieldPanel, FieldRowPanel,
 InlinePanel, MultiFieldPanel
)
from wagtail.core.fields import RichTextField
from wagtail.contrib.forms.models import AbstractEmailForm, AbstractFormField, AbstractFormSubmission

class FormField(AbstractFormField):
 page = ParentalKey('FormPage', on_delete=models.CASCADE, related_name='form_fields')

class FormPage(AbstractEmailForm):
 intro = RichTextField(blank=True)
 thank_you_text = RichTextField(blank=True)

 content_panels = AbstractEmailForm.content_panels + [
 FieldPanel('intro', classname="full"),
 InlinePanel('form_fields', label="Form fields"),
 FieldPanel('thank_you_text', classname="full"),
 MultiFieldPanel([
 FieldRowPanel([
 FieldPanel('from_address', classname="col6"),
 FieldPanel('to_address', classname="col6"),
]),
 FieldPanel('subject'),
], "Email"),
]

 def serve(self, request, *args, **kwargs):
 if self.get_submission_class().objects.filter(page=self, user__pk=request.user.pk).exists():
 return render(
 request,
 self.template,
 self.get_context(request)
)

 return super().serve(request, *args, **kwargs)

 def get_submission_class(self):
 return CustomFormSubmission

 def process_form_submission(self, form):
 self.get_submission_class().objects.create(
 form_data=json.dumps(form.cleaned_data, cls=DjangoJSONEncoder),
 page=self, user=form.user
)

class CustomFormSubmission(AbstractFormSubmission):
 user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)

 class Meta:
 unique_together = ('page', 'user')

Your template should look like this:

{% load wagtailcore_tags %}
<html>
 <head>
 <title>{{ page.title }}</title>
 </head>
 <body>
 <h1>{{ page.title }}</h1>

 {% if user.is_authenticated and user.is_active or request.is_preview %}
 {% if form %}
 <div>{{ page.intro|richtext }}</div>
 <form action="{% pageurl page %}" method="POST">
 {% csrf_token %}
 {{ form.as_p }}
 <input type="submit">
 </form>
 {% else %}
 <div>You can fill in the from only one time.</div>
 {% endif %}
 {% else %}
 <div>To fill in the form, you must to log in.</div>
 {% endif %}
 </body>
</html>

Multi-step form

The following example shows how to create a multi-step form.

from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage
from django.shortcuts import render
from modelcluster.fields import ParentalKey
from wagtail.admin.edit_handlers import (
 FieldPanel, FieldRowPanel,
 InlinePanel, MultiFieldPanel
)
from wagtail.core.fields import RichTextField
from wagtail.contrib.forms.models import AbstractEmailForm, AbstractFormField

class FormField(AbstractFormField):
 page = ParentalKey('FormPage', on_delete=models.CASCADE, related_name='form_fields')

class FormPage(AbstractEmailForm):
 intro = RichTextField(blank=True)
 thank_you_text = RichTextField(blank=True)

 content_panels = AbstractEmailForm.content_panels + [
 FieldPanel('intro', classname="full"),
 InlinePanel('form_fields', label="Form fields"),
 FieldPanel('thank_you_text', classname="full"),
 MultiFieldPanel([
 FieldRowPanel([
 FieldPanel('from_address', classname="col6"),
 FieldPanel('to_address', classname="col6"),
]),
 FieldPanel('subject'),
], "Email"),
]

 def get_form_class_for_step(self, step):
 return self.form_builder(step.object_list).get_form_class()

 def serve(self, request, *args, **kwargs):
 """
 Implements a simple multi-step form.

 Stores each step into a session.
 When the last step was submitted correctly, saves whole form into a DB.
 """

 session_key_data = 'form_data-%s' % self.pk
 is_last_step = False
 step_number = request.GET.get('p', 1)

 paginator = Paginator(self.get_form_fields(), per_page=1)
 try:
 step = paginator.page(step_number)
 except PageNotAnInteger:
 step = paginator.page(1)
 except EmptyPage:
 step = paginator.page(paginator.num_pages)
 is_last_step = True

 if request.method == 'POST':
 # The first step will be submitted with step_number == 2,
 # so we need to get a form from previous step
 # Edge case - submission of the last step
 prev_step = step if is_last_step else paginator.page(step.previous_page_number())

 # Create a form only for submitted step
 prev_form_class = self.get_form_class_for_step(prev_step)
 prev_form = prev_form_class(request.POST, page=self, user=request.user)
 if prev_form.is_valid():
 # If data for step is valid, update the session
 form_data = request.session.get(session_key_data, {})
 form_data.update(prev_form.cleaned_data)
 request.session[session_key_data] = form_data

 if prev_step.has_next():
 # Create a new form for a following step, if the following step is present
 form_class = self.get_form_class_for_step(step)
 form = form_class(page=self, user=request.user)
 else:
 # If there is no next step, create form for all fields
 form = self.get_form(
 request.session[session_key_data],
 page=self, user=request.user
)

 if form.is_valid():
 # Perform validation again for whole form.
 # After successful validation, save data into DB,
 # and remove from the session.
 form_submission = self.process_form_submission(form)
 del request.session[session_key_data]
 # render the landing page
 return self.render_landing_page(request, form_submission, *args, **kwargs)
 else:
 # If data for step is invalid
 # we will need to display form again with errors,
 # so restore previous state.
 form = prev_form
 step = prev_step
 else:
 # Create empty form for non-POST requests
 form_class = self.get_form_class_for_step(step)
 form = form_class(page=self, user=request.user)

 context = self.get_context(request)
 context['form'] = form
 context['fields_step'] = step
 return render(
 request,
 self.template,
 context
)

Your template for this form page should look like this:

{% load wagtailcore_tags %}
<html>
 <head>
 <title>{{ page.title }}</title>
 </head>
 <body>
 <h1>{{ page.title }}</h1>

 <div>{{ page.intro|richtext }}</div>
 <form action="{% pageurl page %}?p={{ fields_step.number|add:"1" }}" method="POST">
 {% csrf_token %}
 {{ form.as_p }}
 <input type="submit">
 </form>
 </body>
</html>

Note that the example shown before allows the user to return to a previous step,
or to open a second step without submitting the first step.
Depending on your requirements, you may need to add extra checks.

Show results

If you are implementing polls or surveys, you may want to show results after submission.
The following example demonstrates how to do this.

First, you need to collect results as shown below:

from modelcluster.fields import ParentalKey
from wagtail.admin.edit_handlers import (
 FieldPanel, FieldRowPanel,
 InlinePanel, MultiFieldPanel
)
from wagtail.core.fields import RichTextField
from wagtail.contrib.forms.models import AbstractEmailForm, AbstractFormField

class FormField(AbstractFormField):
 page = ParentalKey('FormPage', on_delete=models.CASCADE, related_name='form_fields')

class FormPage(AbstractEmailForm):
 intro = RichTextField(blank=True)
 thank_you_text = RichTextField(blank=True)

 content_panels = AbstractEmailForm.content_panels + [
 FieldPanel('intro', classname="full"),
 InlinePanel('form_fields', label="Form fields"),
 FieldPanel('thank_you_text', classname="full"),
 MultiFieldPanel([
 FieldRowPanel([
 FieldPanel('from_address', classname="col6"),
 FieldPanel('to_address', classname="col6"),
]),
 FieldPanel('subject'),
], "Email"),
]

 def get_context(self, request, *args, **kwargs):
 context = super().get_context(request, *args, **kwargs)

 # If you need to show results only on landing page,
 # you may need check request.method

 results = dict()
 # Get information about form fields
 data_fields = [
 (field.clean_name, field.label)
 for field in self.get_form_fields()
]

 # Get all submissions for current page
 submissions = self.get_submission_class().objects.filter(page=self)
 for submission in submissions:
 data = submission.get_data()

 # Count results for each question
 for name, label in data_fields:
 answer = data.get(name)
 if answer is None:
 # Something wrong with data.
 # Probably you have changed questions
 # and now we are receiving answers for old questions.
 # Just skip them.
 continue

 if type(answer) is list:
 # Answer is a list if the field type is 'Checkboxes'
 answer = u', '.join(answer)

 question_stats = results.get(label, {})
 question_stats[answer] = question_stats.get(answer, 0) + 1
 results[label] = question_stats

 context.update({
 'results': results,
 })
 return context

Next, you need to transform your template to display the results:

{% load wagtailcore_tags %}
<html>
 <head>
 <title>{{ page.title }}</title>
 </head>
 <body>
 <h1>{{ page.title }}</h1>

 <h2>Results</h2>
 {% for question, answers in results.items %}
 <h3>{{ question }}</h3>
 {% for answer, count in answers.items %}
 <div>{{ answer }}: {{ count }}</div>
 {% endfor %}
 {% endfor %}

 <div>{{ page.intro|richtext }}</div>
 <form action="{% pageurl page %}" method="POST">
 {% csrf_token %}
 {{ form.as_p }}
 <input type="submit">
 </form>
 </body>
</html>

You can also show the results on the landing page.

Custom landing page redirect

You can override the render_landing_page method on your FormPage to change what is rendered when a form submits.

In this example below we have added a thank_you_page field that enables custom redirects after a form submits to the selected page.

When overriding the render_landing_page method, we check if there is a linked thank_you_page and then redirect to it if it exists.

Finally, we add a URL param of id based on the form_submission if it exists.

from django.shortcuts import redirect
from wagtail.admin.edit_handlers import (
 FieldPanel, FieldRowPanel, InlinePanel, MultiFieldPanel, PageChooserPanel)
from wagtail.contrib.forms.models import AbstractEmailForm

class FormPage(AbstractEmailForm):

 # intro, thank_you_text, ...

 thank_you_page = models.ForeignKey(
 'wagtailcore.Page',
 null=True,
 blank=True,
 on_delete=models.SET_NULL,
 related_name='+',
)

 def render_landing_page(self, request, form_submission=None, *args, **kwargs):
 if self.thank_you_page:
 url = self.thank_you_page.url
 # if a form_submission instance is available, append the id to URL
 # when previewing landing page, there will not be a form_submission instance
 if form_submission:
 url += '?id=%s' % form_submission.id
 return redirect(url, permanent=False)
 # if no thank_you_page is set, render default landing page
 return super().render_landing_page(request, form_submission, *args, **kwargs)

 content_panels = AbstractEmailForm.content_panels + [
 FieldPanel('intro', classname='full'),
 InlinePanel('form_fields'),
 FieldPanel('thank_you_text', classname='full'),
 PageChooserPanel('thank_you_page'),
 MultiFieldPanel([
 FieldRowPanel([
 FieldPanel('from_address', classname='col6'),
 FieldPanel('to_address', classname='col6'),
]),
 FieldPanel('subject'),
], 'Email'),
]

Customise form submissions listing in Wagtail Admin

The Admin listing of form submissions can be customised by setting the attribute submissions_list_view_class on your FormPage model.

The list view class must be a subclass of SubmissionsListView from wagtail.contrib.forms.views, which is a child class of Django’s class based ListView [https://docs.djangoproject.com/en/stable/ref/class-based-views/generic-display/#django.views.generic.list.ListView].

Example:

from wagtail.contrib.forms.models import AbstractEmailForm, AbstractFormField
from wagtail.contrib.forms.views import SubmissionsListView

class CustomSubmissionsListView(SubmissionsListView):
 paginate_by = 50 # show more submissions per page, default is 20
 ordering = ('submit_time',) # order submissions by oldest first, normally newest first
 ordering_csv = ('-submit_time',) # order csv export by newest first, normally oldest first

 # override the method to generate csv filename
 def get_csv_filename(self):
 """ Returns the filename for CSV file with page slug at start"""
 filename = super().get_csv_filename()
 return self.form_page.slug + '-' + filename

class FormField(AbstractFormField):
 page = ParentalKey('FormPage', related_name='form_fields')

class FormPage(AbstractEmailForm):
 """Form Page with customised submissions listing view"""

 # set custom view class as class attribute
 submissions_list_view_class = CustomSubmissionsListView

 intro = RichTextField(blank=True)
 thank_you_text = RichTextField(blank=True)

 # content_panels = ...

Adding a custom field type

First, make the new field type available in the page editor by changing your FormField model.

	Create a new set of choices which includes the original FORM_FIELD_CHOICES along with new field types you want to make available.

	Each choice must contain a unique key and a human readable name of the field, e.g. ('slug', 'URL Slug')

	Override the field_type field in your FormField model with choices attribute using these choices.

	You will need to run ./manage.py makemigrations and ./manage.py migrate after this step.

Then, create and use a new form builder class.

	Define a new form builder class that extends the FormBuilder class.

	Add a method that will return a created Django form field for the new field type.

	Its name must be in the format: create_<field_type_key>_field, e.g. create_slug_field

	Override the form_builder attribute in your form page model to use your new form builder class.

Example:

from django import forms
from django.db import models
from modelcluster.fields import ParentalKey
from wagtail.contrib.forms.forms import FormBuilder
from wagtail.contrib.forms.models import (
 AbstractEmailForm, AbstractFormField, FORM_FIELD_CHOICES)

class FormField(AbstractFormField):
 # extend the built in field type choices
 # our field type key will be 'ipaddress'
 CHOICES = FORM_FIELD_CHOICES + (('ipaddress', 'IP Address'),)

 page = ParentalKey('FormPage', related_name='form_fields')
 # override the field_type field with extended choices
 field_type = models.CharField(
 verbose_name='field type',
 max_length=16,
 # use the choices tuple defined above
 choices=CHOICES
)

class CustomFormBuilder(FormBuilder):
 # create a function that returns an instanced Django form field
 # function name must match create_<field_type_key>_field
 def create_ipaddress_field(self, field, options):
 # return `forms.GenericIPAddressField(**options)` not `forms.SlugField`
 # returns created a form field with the options passed in
 return forms.GenericIPAddressField(**options)

class FormPage(AbstractEmailForm):
 # intro, thank_you_text, edit_handlers, etc...

 # use custom form builder defined above
 form_builder = CustomFormBuilder

Custom send_mail method

If you want to change the content of the email that is sent when a form submits you can override the send_mail method.

To do this, you need to:

	Ensure you have your form model defined that extends wagtail.contrib.forms.models.AbstractEmailForm.

	In your models.py file, import the wagtail.admin.mail.send_mail function.

	Override the send_mail method in your page model.

Example:

from datetime import date
... additional wagtail imports
from wagtail.admin.mail import send_mail
from wagtail.contrib.forms.models import AbstractEmailForm

class FormPage(AbstractEmailForm):
 # ... fields, content_panels, etc

 def send_mail(self, form):
 # `self` is the FormPage, `form` is the form's POST data on submit

 # Email addresses are parsed from the FormPage's addresses field
 addresses = [x.strip() for x in self.to_address.split(',')]

 # Subject can be adjusted, be sure to include the form's defined subject field
 submitted_date_str = date.today().strftime('%x')
 subject = self.subject + " - " + submitted_date_str # add date to email subject

 content = []

 # Add a title (not part of original method)
 content.append('{}: {}'.format('Form', self.title))

 for field in form:
 # add the value of each field as a new line
 value = field.value()
 if isinstance(value, list):
 value = ', '.join(value)
 content.append('{}: {}'.format(field.label, value))

 # Add a link to the form page
 content.append('{}: {}'.format('Submitted Via', self.full_url))

 # Add the date the form was submitted
 content.append('{}: {}'.format('Submitted on', submitted_date_str))

 # Content is joined with a new line to separate each text line
 content = '\n'.join(content)

 # wagtail.admin.mail - send_mail function is called
 # This function extends the Django default send_mail function
 send_mail(subject, content, addresses, self.from_address)

 Sitemap generator

Sitemap generator

This document describes how to create XML sitemaps for your Wagtail website
using the wagtail.contrib.sitemaps module.

Note

As of Wagtail 1.10 the Django contrib sitemap app is used to generate
sitemaps. However since Wagtail requires the Site instance to be available
during the sitemap generation you will have to use the views from the
wagtail.contrib.sitemaps.views module instead of the views
provided by Django (django.contrib.sitemaps.views).

The usage of these views is otherwise identical, which means that
customisation and caching of the sitemaps are done using the default Django
patterns. See the Django documentation for in-depth information.

Basic configuration

You firstly need to add "django.contrib.sitemaps" to INSTALLED_APPS in your
Django settings file:

INSTALLED_APPS = [
 ...

 "django.contrib.sitemaps",
]

Then, in urls.py, you need to add a link to the
wagtail.contrib.sitemaps.views.sitemap view which generates the
sitemap:

from wagtail.contrib.sitemaps.views import sitemap

urlpatterns = [
 ...

 url('^sitemap\.xml$', sitemap),

 ...

 # Ensure that the 'sitemap' line appears above the default Wagtail page serving route
 url(r'', include(wagtail_urls)),
]

You should now be able to browse to /sitemap.xml and see the sitemap
working. By default, all published pages in your website will be added to the
site map.

Setting the hostname

By default, the sitemap uses the hostname defined in the Wagtail Admin’s
Sites area. If your default site is called localhost, then URLs in the
sitemap will look like:

<url>
 <loc>http://localhost/about/</loc>
 <lastmod>2015-09-26</lastmod>
</url>

For tools like Google Search Tools to properly index your site, you need to set
a valid, crawlable hostname. If you change the site’s hostname from
localhost to mysite.com, sitemap.xml will contain the correct URLs:

<url>
 <loc>http://mysite.com/about/</loc>
 <lastmod>2015-09-26</lastmod>
</url>

Find out more about working with Sites.

Customising

URLs

The Page class defines a get_sitemap_urls method which you can
override to customise sitemaps per Page instance. This method must accept
a request object and return a list of dictionaries, one dictionary per URL
entry in the sitemap. You can exclude pages from the sitemap by returning an
empty list.

Each dictionary can contain the following:

	location (required) - This is the full URL path to add into the sitemap.

	lastmod - A python date or datetime set to when the page was last modified.

	changefreq

	priority

You can add more but you will need to override the
sitemap.xml template in order for them to be displayed in the sitemap.

Serving multiple sitemaps

If you want to support the sitemap indexes from Django then you will need to
use the index view from wagtail.contrib.sitemaps.views instead of the index
view from django.contrib.sitemaps.views. Please see the Django
documentation for further details.

 Frontend cache invalidator

Frontend cache invalidator

Many websites use a frontend cache such as Varnish, Squid, Cloudflare or CloudFront to gain extra performance. The downside of using a frontend cache though is that they don’t respond well to updating content and will often keep an old version of a page cached after it has been updated.

This document describes how to configure Wagtail to purge old versions of pages from a frontend cache whenever a page gets updated.

Setting it up

Firstly, add "wagtail.contrib.frontend_cache" to your INSTALLED_APPS:

INSTALLED_APPS = [
 ...

 "wagtail.contrib.frontend_cache"
]

The wagtailfrontendcache module provides a set of signal handlers which will automatically purge the cache whenever a page is published or deleted. These signal handlers are automatically registered when the wagtail.contrib.frontend_cache app is loaded.

Varnish/Squid

Add a new item into the WAGTAILFRONTENDCACHE setting and set the BACKEND parameter to wagtail.contrib.frontend_cache.backends.HTTPBackend. This backend requires an extra parameter LOCATION which points to where the cache is running (this must be a direct connection to the server and cannot go through another proxy).

settings.py

WAGTAILFRONTENDCACHE = {
 'varnish': {
 'BACKEND': 'wagtail.contrib.frontend_cache.backends.HTTPBackend',
 'LOCATION': 'http://localhost:8000',
 },
}
 WAGTAILFRONTENDCACHE_LANGUAGES = []

Set WAGTAILFRONTENDCACHE_LANGUAGES to a list of languages (typically equal to [l[0] for l in settings.LANGUAGES]) to also purge the urls for each language of a purging url. This setting needs settings.USE_I18N to be True to work. Its default is an empty list.

Finally, make sure you have configured your frontend cache to accept PURGE requests:

	Varnish [https://www.varnish-cache.org/docs/3.0/tutorial/purging.html]

	Squid [https://wiki.squid-cache.org/SquidFaq/OperatingSquid#How_can_I_purge_an_object_from_my_cache.3F]

Cloudflare

Firstly, you need to register an account with Cloudflare if you haven’t already got one. You can do this here: Cloudflare Sign up [https://www.cloudflare.com/sign-up]

Add an item into the WAGTAILFRONTENDCACHE and set the BACKEND parameter to wagtail.contrib.frontend_cache.backends.CloudflareBackend.

This backend can be configured to use an account-wide API key, or an API token with restricted access.

To use an account-wide API key, find the key as described in the Cloudflare documentation [https://support.cloudflare.com/hc/en-us/articles/200167836-Managing-API-Tokens-and-Keys#12345682] and specify EMAIL and API_KEY parameters.

To use a limited API token, create a token [https://support.cloudflare.com/hc/en-us/articles/200167836-Managing-API-Tokens-and-Keys#12345680] configured with the ‘Zone, Cache Purge’ permission and specify the BEARER_TOKEN parameter.

A ZONEID parameter will need to be set for either option. To find the ZONEID for your domain, read the Cloudflare API Documentation [https://api.cloudflare.com/#getting-started-resource-ids]

With an API key:

settings.py

WAGTAILFRONTENDCACHE = {
 'cloudflare': {
 'BACKEND': 'wagtail.contrib.frontend_cache.backends.CloudflareBackend',
 'EMAIL': 'your-cloudflare-email-address@example.com',
 'API_KEY': 'your cloudflare api key',
 'ZONEID': 'your cloudflare domain zone id',
 },
}

With an API token:

settings.py

WAGTAILFRONTENDCACHE = {
 'cloudflare': {
 'BACKEND': 'wagtail.contrib.frontend_cache.backends.CloudflareBackend',
 'BEARER_TOKEN': 'your cloudflare bearer token',
 'ZONEID': 'your cloudflare domain zone id',
 },
}

Amazon CloudFront

Within Amazon Web Services you will need at least one CloudFront web distribution. If you don’t have one, you can get one here: CloudFront getting started [https://aws.amazon.com/cloudfront/]

Add an item into the WAGTAILFRONTENDCACHE and set the BACKEND parameter to wagtail.contrib.frontend_cache.backends.CloudfrontBackend. This backend requires one extra parameter, DISTRIBUTION_ID (your CloudFront generated distribution id).

WAGTAILFRONTENDCACHE = {
 'cloudfront': {
 'BACKEND': 'wagtail.contrib.frontend_cache.backends.CloudfrontBackend',
 'DISTRIBUTION_ID': 'your-distribution-id',
 },
}

Configuration of credentials can done in multiple ways. You won’t need to store them in your Django settings file. You can read more about this here: Boto 3 Docs [https://boto3.readthedocs.org/en/latest/guide/configuration.html]

In case you run multiple sites with Wagtail and each site has its CloudFront distribution, provide a mapping instead of a single distribution. Make sure the mapping matches with the hostnames provided in your site settings.

WAGTAILFRONTENDCACHE = {
 'cloudfront': {
 'BACKEND': 'wagtail.contrib.frontend_cache.backends.CloudfrontBackend',
 'DISTRIBUTION_ID': {
 'www.wagtail.io': 'your-distribution-id',
 'www.madewithwagtail.org': 'your-distribution-id',
 },
 },
}

Note

In most cases, absolute URLs with www prefixed domain names should be used in your mapping. Only drop the www prefix if you’re absolutely sure you’re not using it (e.g. a subdomain).

Advanced usage

Invalidating more than one URL per page

By default, Wagtail will only purge one URL per page. If your page has more than one URL to be purged, you will need to override the get_cached_paths method on your page type.

class BlogIndexPage(Page):
 def get_blog_items(self):
 # This returns a Django paginator of blog items in this section
 return Paginator(self.get_children().live().type(BlogPage), 10)

 def get_cached_paths(self):
 # Yield the main URL
 yield '/'

 # Yield one URL per page in the paginator to make sure all pages are purged
 for page_number in range(1, self.get_blog_items().num_pages + 1):
 yield '/?page=' + str(page_number)

Invalidating index pages

Pages that list other pages (such as a blog index) may need to be purged as
well so any changes to a blog page are also reflected on the index (for example,
a blog post was added, deleted or its title/thumbnail was changed).

To purge these pages, we need to write a signal handler that listens for
Wagtail’s page_published and page_unpublished signals for blog pages
(note, page_published is called both when a page is created and updated).
This signal handler would trigger the invalidation of the index page using the
PurgeBatch class which is used to construct and dispatch invalidation requests.

models.py
from django.dispatch import receiver
from django.db.models.signals import pre_delete

from wagtail.core.signals import page_published
from wagtail.contrib.frontend_cache.utils import PurgeBatch

...

def blog_page_changed(blog_page):
 # Find all the live BlogIndexPages that contain this blog_page
 batch = PurgeBatch()
 for blog_index in BlogIndexPage.objects.live():
 if blog_page in blog_index.get_blog_items().object_list:
 batch.add_page(blog_index)

 # Purge all the blog indexes we found in a single request
 batch.purge()

@receiver(page_published, sender=BlogPage)
def blog_published_handler(instance):
 blog_page_changed(instance)

@receiver(pre_delete, sender=BlogPage)
def blog_deleted_handler(instance):
 blog_page_changed(instance)

Invalidating URLs

The PurgeBatch class provides a .add_url(url) and a .add_urls(urls)
for adding individual URLs to the purge batch.

For example, this could be useful for purging a single page on a blog index:

from wagtail.contrib.frontend_cache.utils import PurgeBatch

Purge the first page of the blog index
batch = PurgeBatch()
batch.add_url(blog_index.url + '?page=1')
batch.purge()

The PurgeBatch class

All of the methods available on PurgeBatch are listed below:

	
class wagtail.contrib.frontend_cache.utils.PurgeBatch(urls=None)

	Represents a list of URLs to be purged in a single request

	
add_url(url)

	Adds a single URL

	
add_urls(urls)

	Adds multiple URLs from an iterable

This is equivalent to running .add_url(url) on each URL
individually

	
add_page(page)

	Adds all URLs for the specified page

This combines the page’s full URL with each path that is returned by
the page’s .get_cached_paths method

	
add_pages(pages)

	Adds multiple pages from a QuerySet or an iterable

This is equivalent to running .add_page(page) on each page
individually

	
purge(backend_settings=None, backends=None)

	Performs the purge of all the URLs in this batch

This method takes two optional keyword arguments: backend_settings and backends

	backend_settings can be used to override the WAGTAILFRONTENDCACHE setting for
just this call

	backends can be set to a list of backend names. When set, the invalidation request
will only be sent to these backends

 RoutablePageMixin

RoutablePageMixin

The RoutablePageMixin mixin provides a convenient way for a page to respond on multiple sub-URLs with different views. For example, a blog section on a site might provide several different types of index page at URLs like /blog/2013/06/, /blog/authors/bob/, /blog/tagged/python/, all served by the same page instance.

A Page using RoutablePageMixin exists within the page tree like any other page, but URL paths underneath it are checked against a list of patterns. If none of the patterns match, control is passed to subpages as usual (or failing that, a 404 error is thrown).

By default a route for r'^$' exists, which serves the content exactly like a regular Page would. It can be overridden by using @route(r'^$') on any other method of the inheriting class.

Installation

Add "wagtail.contrib.routable_page" to your INSTALLED_APPS:

INSTALLED_APPS = [
 ...

 "wagtail.contrib.routable_page",
]

The basics

To use RoutablePageMixin, you need to make your class inherit from both wagtail.contrib.routable_page.models.RoutablePageMixin and wagtail.core.models.Page, then define some view methods and decorate them with wagtail.contrib.routable_page.models.route.

Here’s an example of an EventPage with three views:

from wagtail.core.models import Page
from wagtail.contrib.routable_page.models import RoutablePageMixin, route

class EventPage(RoutablePageMixin, Page):
 ...

 @route(r'^$') # will override the default Page serving mechanism
 def current_events(self, request):
 """
 View function for the current events page
 """
 ...

 @route(r'^past/$')
 def past_events(self, request):
 """
 View function for the past events page
 """
 ...

 # Multiple routes!
 @route(r'^year/(\d+)/$')
 @route(r'^year/current/$')
 def events_for_year(self, request, year=None):
 """
 View function for the events for year page
 """
 ...

Reversing URLs

RoutablePageMixin adds a reverse_subpage() method to your page model which you can use for reversing URLs. For example:

The URL name defaults to the view method name.
>>> event_page.reverse_subpage('events_for_year', args=(2015,))
'year/2015/'

This method only returns the part of the URL within the page. To get the full URL, you must append it to the values of either the url or the full_url attribute on your page:

>>> event_page.url + event_page.reverse_subpage('events_for_year', args=(2015,))
'/events/year/2015/'

>>> event_page.full_url + event_page.reverse_subpage('events_for_year', args=(2015,))
'http://example.com/events/year/2015/'

Changing route names

The route name defaults to the name of the view. You can override this name with the name keyword argument on @route:

from wagtail.core.models import Page
from wagtail.contrib.routable_page.models import RoutablePageMixin, route

class EventPage(RoutablePageMixin, Page):
 ...

 @route(r'^year/(\d+)/$', name='year')
 def events_for_year(self, request, year):
 """
 View function for the events for year page
 """
 ...

>>> event_page.reverse_subpage('year', args=(2015,))
'/events/year/2015/'

The RoutablePageMixin class

	
class wagtail.contrib.routable_page.models.RoutablePageMixin

	This class can be mixed in to a Page model, allowing extra routes to be
added to it.

	
classmethod get_subpage_urls()

	

	
resolve_subpage(path)

	This method takes a URL path and finds the view to call.

Example:

view, args, kwargs = page.resolve_subpage('/past/')
response = view(request, *args, **kwargs)

	
reverse_subpage(name, args=None, kwargs=None)

	This method takes a route name/arguments and returns a URL path.

Example:

url = page.url + page.reverse_subpage('events_for_year', kwargs={'year': '2014'})

The routablepageurl template tag

	
wagtail.contrib.routable_page.templatetags.wagtailroutablepage_tags.routablepageurl(context, page, url_name, *args, **kwargs)

	routablepageurl is similar to pageurl, but works with
pages using RoutablePageMixin. It behaves like a hybrid between the built-in
reverse, and pageurl from Wagtail.

page is the RoutablePage that URLs will be generated from.

url_name is a URL name defined in page.subpage_urls.

Positional arguments and keyword arguments should be passed as normal
positional arguments and keyword arguments.

Example:

{% load wagtailroutablepage_tags %}

{% routablepageurl page "feed" %}
{% routablepageurl page "archive" 2014 08 14 %}
{% routablepageurl page "food" foo="bar" baz="quux" %}

 ModelAdmin

ModelAdmin

The modeladmin module allows you to add any model in your project to the Wagtail admin. You can create customisable listing
pages for a model, including plain Django models, and add navigation elements so that a model can be accessed directly from the Wagtail admin. Simply extend the ModelAdmin class, override a few attributes to suit your needs, register it with Wagtail using an easy one-line modeladmin_register method (you can copy and paste from the examples below), and you’re good to go. Your model doesn’t need to extend Page or be registered as a Snippet, and it won’t interfere with any of the existing admin functionality that Wagtail provides.

Summary of features

	A customisable list view, allowing you to control what values are displayed
for each row, available options for result filtering, default ordering, and
more.

	Access your list views from the Wagtail admin menu easily with automatically
generated menu items, with automatic ‘active item’ highlighting. Control the
label text and icons used with easy-to-change attributes on your class.

	An additional ModelAdminGroup class, that allows you to group your
related models, and list them together in their own submenu, for a more
logical user experience.

	Simple, robust add and edit views for your non-Page models that use
the panel configurations defined on your model using Wagtail’s edit panels.

	For Page models, the system directs to Wagtail’s existing add and
edit views, and returns you back to the correct list page, for a seamless
experience.

	Full respect for permissions assigned to your Wagtail users and groups. Users
will only be able to do what you want them to!

	All you need to easily hook your ModelAdmin classes into Wagtail, taking
care of URL registration, menu changes, and registering any missing model
permissions, so that you can assign them to Groups.

	Built to be customisable - While modeladmin provides a solid
experience out of the box, you can easily use your own templates, and the
ModelAdmin class has a large number of methods that you can override or
extend, allowing you to customise the behaviour to a greater degree.

Want to know more about customising ModelAdmin?

	modeladmin customisation primer

	Customising the menu item

	Customising IndexView - the listing view

	Customising CreateView, EditView and DeleteView

	Enabling & customising InspectView

	Customising ChooseParentView

	Additional tips and tricks

Installation

Add wagtail.contrib.modeladmin to your INSTALLED_APPS:

INSTALLED_APPS = [
 ...
 'wagtail.contrib.modeladmin',
]

How to use

A simple example

Let’s say your website is for a local library. They have a model called
Book that appears across the site in many places. You can define a normal
Django model for it, then use ModelAdmin to create a menu in Wagtail’s admin
to create, view, and edit Book entries.

models.py looks like this:

from django.db import models
from wagtail.admin.edit_handlers import FieldPanel
from wagtail.images.edit_handlers import ImageChooserPanel

class Book(models.Model):
 title = models.CharField(max_length=255)
 author = models.CharField(max_length=255)
 cover_photo = models.ForeignKey(
 'wagtailimages.Image',
 null=True, blank=True,
 on_delete=models.SET_NULL,
 related_name='+'
)

 panels = [
 FieldPanel('title'),
 FieldPanel('author'),
 ImageChooserPanel('cover_photo')
]

Tip

You can specify FieldPanels like ImageChooserPanel, PageChooserPanel,
and DocumentChooserPanel within the panels attribute of the model.
This lets you use Wagtail-specific features in an otherwise traditional
Django model.

wagtail_hooks.py in your app directory would look something like this:

from wagtail.contrib.modeladmin.options import (
 ModelAdmin, modeladmin_register)
from .models import Book

class BookAdmin(ModelAdmin):
 model = Book
 menu_label = 'Book' # ditch this to use verbose_name_plural from model
 menu_icon = 'pilcrow' # change as required
 menu_order = 200 # will put in 3rd place (000 being 1st, 100 2nd)
 add_to_settings_menu = False # or True to add your model to the Settings sub-menu
 exclude_from_explorer = False # or True to exclude pages of this type from Wagtail's explorer view
 list_display = ('title', 'author')
 list_filter = ('author',)
 search_fields = ('title', 'author')

Now you just need to register your customised ModelAdmin class with Wagtail
modeladmin_register(BookAdmin)

A more complicated example

In addition to Book, perhaps we also want to add Author and Genre
models to our app and display a menu item for each of them, too. Creating
lots of menus can add up quickly, so it might be a good idea to group related
menus together. This section show you how to create one menu called Library
which expands to show submenus for Book, Author, and Genre.

Assume we’ve defined Book, Author, and Genre models in
models.py.

wagtail_hooks.py in your app directory would look something like this:

from wagtail.contrib.modeladmin.options import (
 ModelAdmin, ModelAdminGroup, modeladmin_register)
from .models import (
 Book, Author, Genre)

class BookAdmin(ModelAdmin):
 model = Book
 menu_label = 'Book' # ditch this to use verbose_name_plural from model
 menu_icon = 'pilcrow' # change as required
 list_display = ('title', 'author')
 list_filter = ('genre', 'author')
 search_fields = ('title', 'author')

class AuthorAdmin(ModelAdmin):
 model = Author
 menu_label = 'Author' # ditch this to use verbose_name_plural from model
 menu_icon = 'user' # change as required
 list_display = ('first_name', 'last_name')
 list_filter = ('first_name', 'last_name')
 search_fields = ('first_name', 'last_name')

class GenreAdmin(ModelAdmin):
 model = Genre
 menu_label = 'Genre' # ditch this to use verbose_name_plural from model
 menu_icon = 'group' # change as required
 list_display = ('name',)
 list_filter = ('name',)
 search_fields = ('name',)

class LibraryGroup(ModelAdminGroup):
 menu_label = 'Library'
 menu_icon = 'folder-open-inverse' # change as required
 menu_order = 200 # will put in 3rd place (000 being 1st, 100 2nd)
 items = (BookAdmin, AuthorAdmin, GenreAdmin)

When using a ModelAdminGroup class to group several ModelAdmin classes together,
you only need to register the ModelAdminGroup class with Wagtail:
modeladmin_register(LibraryGroup)

Registering multiple classes in one wagtail_hooks.py file

Each time you call modeladmin_register(MyAdmin) it creates a new top-level
menu item in Wagtail’s left sidebar. You can call this multiple times within
the same wagtail_hooks.py file if you want. The example below will create
3 top-level menus.

class BookAdmin(ModelAdmin):
 model = Book
 ...

class MovieAdmin(ModelAdmin):
 model = MovieModel
 ...

class MusicAdminGroup(ModelAdminGroup):
 label = _("Music")
 items = (AlbumAdmin, ArtistAdmin)
 ...

modeladmin_register(BookAdmin)
modeladmin_register(MovieAdmin)
modeladmin_register(MusicAdminGroup)

 modeladmin customisation primer

modeladmin customisation primer

The modeladmin app is designed to offer you as much flexibility as possible
in how your model and its objects are represented in Wagtail’s CMS. This page
aims to provide you with some background information to help you gain a better
understanding of what the app can do, and to point you in the right direction,
depending on the kind of customisations you’re looking to make.

	Wagtail’s ModelAdmin class isn’t the same as Django’s

	Changing what appears in the listing

	Adding additional stylesheets and/or JavaScript

	Overriding templates

	Overriding views

	Overriding helper classes

Wagtail’s ModelAdmin class isn’t the same as Django’s

Wagtail’s ModelAdmin class is designed to be used in a similar way to
Django’s class of the same name, and it often uses the same attribute and method
names to achieve similar things. However, there are a few key differences:

Add & edit forms are still defined by panels and edit_handlers

In Wagtail, controlling which fields appear in add/edit forms for your
Model, and defining how they are grouped and ordered, is achieved by
adding a panels attribute, or edit_handler to your Model class.
This remains the same whether your model is a Page type, a snippet, or
just a standard Django Model. Because of this, Wagtail’s ModelAdmin
class is mostly concerned with ‘listing’ configuration. For example,
list_display, list_filter and search_fields attributes are
present and support largely the same values as Django’s ModelAdmin class,
while fields, fieldsets, exclude and other attributes you may be used
to using to configure Django’s add/edit views, simply aren’t supported by
Wagtail’s version.

‘Page type’ models need to be treated differently from other models

While modeladmin’s listing view and it’s supported customisation
options work in exactly the same way for all types of Model, when it
comes to the other management views, the treatment differs depending on
whether your ModelAdmin class is representing a page type model (that
extends wagtailcore.models.Page) or not.

Pages in Wagtail have some unique properties, and require additional views,
interface elements and general treatment in order to be managed
effectively. For example, they have a tree structure that must be preserved
properly as pages are added, deleted and moved around. They also have a
revisions system, their own permission considerations, and the facility to
preview changes before saving changes. Because of this added complexity,
Wagtail provides its own specific views for managing any custom page types
you might add to your project (whether you create a ModelAdmin class
for them or not).

In order to deliver a consistent user experience, modeladmin
simply redirects users to Wagtail’s existing page management views wherever
possible. You should bear this in mind if you ever find yourself wanting to
change what happens when pages of a certain type are added, deleted,
published, or have some other action applied to them. Customising the
CreateView or EditView for your page type Model (even if just
to add an additional stylesheet or JavaScript), simply won’t have any
effect, as those views are not used.

If you do find yourself needing to customise the add, edit or other
behaviour for a page type model, you should take a look at the following
part of the documentation: Hooks.

Wagtail’s ModelAdmin class is ‘modular’

Unlike Django’s class of the same name, wagtailadmin’s ModelAmin acts
primarily as a ‘controller’ class. While it does have a set of attributes
and methods to enable you to configure how various components should treat
your model, it has been deliberately designed to do as little work as
possible by itself; it designates all of the real work to a set of
separate, swappable components.

The theory is: If you want to do something differently, or add some
functionality that modeladmin doesn’t already have, you can create new
classes (or extend the ones provided by modeladmin) and easily
configure your ModelAdmin class to use them instead of the defaults.

	Learn more about Overriding views

	Learn more about Overriding helper classes

Changing what appears in the listing

You should familiarise yourself with the attributes and methods supported by
the ModelAdmin class, that allow you to change what is displayed in the
IndexView. The following page should give you everything you need to get
going: Customising IndexView - the listing view

Adding additional stylesheets and/or JavaScript

The ModelAdmin class provides several attributes to enable you to easily
add additional stylesheets and JavaScript to the admin interface for your
model. Each attribute simply needs to be a list of paths to the files you
want to include. If the path is for a file in your project’s static directory,
then Wagtail will automatically prepend the path with STATIC_URL so that you don’t need to repeat it each time in your list of paths.

If you’d like to add styles or scripts to the IndexView, you should set the
following attributes:

	index_view_extra_css - Where each item is the path name of a
pre-compiled stylesheet that you’d like to include.

	index_view_extra_js - Where each item is the path name of a JavaScript
file that you’d like to include.

If you’d like to do the same for CreateView and EditView, you should
set the following attributes:

	form_view_extra_css - Where each item is the path name of a
pre-compiled stylesheet that you’d like to include.

	form_view_extra_js - Where each item is the path name of a JavaScript
file that you’d like to include.

And if you’re using the InspectView for your model, and want to do the same
for that view, you should set the following attributes:

	inspect_view_extra_css - Where each item is the path name of a
pre-compiled stylesheet that you’d like to include.

	inspect_view_extra_js - Where each item is the path name of a JavaScript
file that you’d like to include.

Overriding templates

For all modeladmin views, Wagtail looks for templates in the following folders
within your project, before resorting to the defaults:

	/modeladmin/app-name/model-name/

	/modeladmin/app-name/

	/modeladmin/

So, to override the template used by IndexView for example, you’d create a
new index.html template and put it in one of those locations. For example,
if you wanted to do this for an ArticlePage model in a news app, you’d
add your custom template as modeladmin/news/articlepage/index.html.

For reference, modeladmin looks for templates with the following names for
each view:

	'index.html' for IndexView

	'inspect.html' for InspectView

	'create.html' for CreateView

	'edit.html' for EditView

	'delete.html' for DeleteView

	'choose_parent.html' for ChooseParentView

To add extra information to a block within one of the above Wagtail templates, use Django’s {{ block.super }} within the {% block ... %} that you wish to extend. For example, if you wish to display an image in an edit form below the fields of the model that is being edited, you could do the following:

{% extends "modeladmin/edit.html" %}
{% load static %}

{% block content %}
 {{ block.super }}
 <div class="object">

 </div>
{% endblock %}

If for any reason you’d rather bypass the above behaviour and explicitly specify a
template for a specific view, you can set either of the following attributes
on your ModelAdmin class:

	index_template_name to specify a template for IndexView

	inspect_template_name to specify a template for InspectView

	create_template_name to specify a template for CreateView

	edit_template_name to specify a template for EditView

	delete_template_name to specify a template for DeleteView

	choose_parent_template_name to specify a template for ChooseParentView

Overriding views

For all of the views offered by ModelAdmin, the class provides an attribute
that you can override in order to tell it which class you’d like to use:

	index_view_class

	inspect_view_class

	create_view_class (not used for ‘page type’ models)

	edit_view_class (not used for ‘page type’ models)

	delete_view_class (not used for ‘page type’ models)

	choose_parent_view_class (only used for ‘page type’ models)

For example, if you’d like to create your own view class and use it for the
IndexView, you would do the following:

from wagtail.contrib.modeladmin.views import IndexView
from wagtail.contrib.modeladmin.options import ModelAdmin
from .models import MyModel

class MyCustomIndexView(IndexView):
 # New functionality and exising method overrides added here
 ...

class MyModelAdmin(ModelAdmin):
 model = MyModel
 index_view_class = MyCustomIndexView

Or, if you have no need for any of IndexView’s existing functionality in
your view and would rather create your own view from scratch, modeladmin
will support that too. However, it’s highly recommended that you use
modeladmin.views.WMABaseView as a base for your view. It’ll make
integrating with your ModelAdmin class much easier and will provide a bunch of
useful attributes and methods to get you started.

You can also use the url_helper to easily reverse URLs for any ModelAdmin see Reversing ModelAdmin URLs.

Overriding helper classes

While ‘view classes’ are responsible for a lot of the work, there are also
a number of other tasks that modeladmin must do regularly, that need to be
handled in a consistent way, and in a number of different places. These tasks
are designated to a set of simple classes (in modeladmin, these are termed
‘helper’ classes) and can be found in wagtail.contrib.modeladmin.helpers.

If you ever intend to write and use your own custom views with modeladmin,
you should familiarise yourself with these helpers, as they are made available
to views via the modeladmin.views.WMABaseView view.

There are three types of ‘helper class’:

	URL helpers - That help with the consistent generation, naming and
referencing of urls.

	Permission helpers - That help with ensuring only users with sufficient
permissions can perform certain actions, or see options to perform those
actions.

	Button helpers - That, with the help of the other two, helps with the
generation of buttons for use in a number of places.

The ModelAdmin class allows you to define and use your own helper classes
by setting values on the following attributes:

ModelAdmin.url_helper_class

By default, the modeladmin.helpers.url.PageAdminURLHelper class is used
when your model extends wagtailcore.models.Page, otherwise
modeladmin.helpers.url.AdminURLHelper is used.

If you find that the above helper classes don’t work for your needs, you can
easily create your own helper class by sub-classing AdminURLHelper or
PageAdminURLHelper (if your model extends Wagtail’s Page model), and
making any necessary additions/overrides.

Once your class is defined, set the url_helper_class attribute on
your ModelAdmin class to use your custom URLHelper, like so:

from wagtail.contrib.modeladmin.helpers import AdminURLHelper
from wagtail.contrib.modeladmin.options import ModelAdmin, modeladmin_register
from .models import MyModel

class MyURLHelper(AdminURLHelper):
 ...

class MyModelAdmin(ModelAdmin):
 model = MyModel
 url_helper_class = MyURLHelper

modeladmin_register(MyModelAdmin)

Or, if you have a more complicated use case, where simply setting that
attribute isn’t possible (due to circular imports, for example) or doesn’t
meet your needs, you can override the get_url_helper_class method, like
so:

class MyModelAdmin(ModelAdmin):
 model = MyModel

 def get_url_helper_class(self):
 if self.some_attribute is True:
 return MyURLHelper
 return AdminURLHelper

ModelAdmin.permission_helper_class

By default, the modeladmin.helpers.permission.PagePermissionHelper
class is used when your model extends wagtailcore.models.Page,
otherwise modeladmin.helpers.permission.PermissionHelper is used.

If you find that the above helper classes don’t work for your needs, you can
easily create your own helper class, by sub-classing
PermissionHelper (or PagePermissionHelper if your model extends Wagtail’s Page model),
and making any necessary additions/overrides. Once
defined, you set the permission_helper_class attribute on your
ModelAdmin class to use your custom class instead of the default, like so:

from wagtail.contrib.modeladmin.helpers import PermissionHelper
from wagtail.contrib.modeladmin.options import ModelAdmin, modeladmin_register
from .models import MyModel

class MyPermissionHelper(PermissionHelper):
 ...

class MyModelAdmin(ModelAdmin):
 model = MyModel
 permission_helper_class = MyPermissionHelper

modeladmin_register(MyModelAdmin)

Or, if you have a more complicated use case, where simply setting an attribute
isn’t possible or doesn’t meet your needs, you can override the
get_permission_helper_class method, like so:

class MyModelAdmin(ModelAdmin):
 model = MyModel

 def get_permission_helper_class(self):
 if self.some_attribute is True:
 return MyPermissionHelper
 return PermissionHelper

ModelAdmin.button_helper_class

By default, the modeladmin.helpers.button.PageButtonHelper class is used
when your model extends wagtailcore.models.Page, otherwise
modeladmin.helpers.button.ButtonHelper is used.

If you wish to add or change buttons for your model’s IndexView, you’ll need to
create your own button helper class by sub-classing ButtonHelper or PageButtonHelper (if
your model extend’s Wagtail’s Page model), and
make any necessary additions/overrides. Once defined, you set the
button_helper_class attribute on your ModelAdmin class to use your
custom class instead of the default, like so:

from wagtail.contrib.modeladmin.helpers import ButtonHelper
from wagtail.contrib.modeladmin.options import ModelAdmin, modeladmin_register
from .models import MyModel

class MyButtonHelper(ButtonHelper):
 def add_button(self, classnames_add=None, classnames_exclude=None):
 if classnames_add is None:
 classnames_add = []
 if classnames_exclude is None:
 classnames_exclude = []
 classnames = self.add_button_classnames + classnames_add
 cn = self.finalise_classname(classnames, classnames_exclude)
 return {
 'url': self.url_helper.create_url,
 'label': _('Add %s') % self.verbose_name,
 'classname': cn,
 'title': _('Add a new %s') % self.verbose_name,
 }

 def inspect_button(self, pk, classnames_add=None, classnames_exclude=None):
 ...

 def edit_button(self, pk, classnames_add=None, classnames_exclude=None):
 ...

 def delete_button(self, pk, classnames_add=None, classnames_exclude=None):
 ...

class MyModelAdmin(ModelAdmin):
 model = MyModel
 button_helper_class = MyButtonHelper

modeladmin_register(MyModelAdmin)

To customise the buttons found in the ModelAdmin List View you can change the
returned dictionary in the add_button, delete_button, edit_button
or inspect_button methods. For example if you wanted to change the Delete
button you could modify the delete_button method in your ButtonHelper like so:

class MyButtonHelper(ButtonHelper):
 ...
 def delete_button(self, pk, classnames_add=None, classnames_exclude=None):
 ...
 return {
 'url': reverse("your_custom_url"),
 'label': _('Delete'),
 'classname': "custom-css-class",
 'title': _('Delete this item')
 }

Or, if you have a more complicated use case, where simply setting an attribute
isn’t possible or doesn’t meet your needs, you can override the
get_button_helper_class method, like so:

class MyModelAdmin(ModelAdmin):
 model = MyModel

 def get_button_helper_class(self):
 if self.some_attribute is True:
 return MyButtonHelper
 return ButtonHelper

Using helpers in your custom views

As long as you sub-class modeladmin.views.WMABaseView (or one of the more
‘specific’ view classes) to create your custom view, instances of each helper
should be available on instances of your class as:

	self.url_helper

	self.permission_helper

	self.button_helper

Unlike the other two, self.button_helper isn’t populated right away when
the view is instantiated. In order to show the right buttons for the right
users, ButtonHelper instances need to be ‘request aware’, so
self.button_helper is only set once the view’s dispatch() method has
run, which takes a HttpRequest object as an argument, from which the
current user can be identified.

 Customising the menu item

Customising the menu item

You can use the following attributes and methods on the ModelAdmin class to
alter the menu item used to represent your model in Wagtail’s admin area.

	ModelAdmin.menu_label

	ModelAdmin.menu_icon

	ModelAdmin.menu_order

	ModelAdmin.add_to_settings_menu

ModelAdmin.menu_label

Expected value: A string.

Set this attribute to a string value to override the label used for the menu
item that appears in Wagtail’s sidebar. If not set, the menu item will use
verbose_name_plural from your model’s Meta data.

ModelAdmin.menu_icon

Expected value: A string matching one of Wagtail’s icon class names.

If you want to change the icon used to represent your model, you can set the
menu_icon attribute on your class to use one of the other icons available
in Wagtail’s CMS. The same icon will be used for the menu item in Wagtail’s
sidebar, and will also appear in the header on the list page and other views
for your model. If not set, 'doc-full-inverse' will be used for
page-type models, and 'snippet' for others.

If you’re using a ModelAdminGroup class to group together several
ModelAdmin classes in their own sub-menu, and want to change the menu item
used to represent the group, you should override the menu_icon attribute on
your ModelAdminGroup class ('icon-folder-open-inverse' is the default).

ModelAdmin.menu_order

Expected value: An integer between 1 and 999.

If you want to change the position of the menu item for your model (or group of
models) in Wagtail’s sidebar, you do that by setting menu_order. The value
should be an integer between 1 and 999. The lower the value, the higher
up the menu item will appear.

Wagtail’s ‘Explorer’ menu item has an order value of 100, so supply a value
greater than that if you wish to keep the explorer menu item at the top.

ModelAdmin.add_to_settings_menu

Expected value: True or False

If you’d like the menu item for your model to appear in Wagtail’s ‘Settings’
sub-menu instead of at the top level, add add_to_settings_menu = True to
your ModelAdmin class.

This will only work for indivdual ModelAdmin classes registered with their
own modeladmin_register call. It won’t work for members of a
ModelAdminGroup.

 Customising IndexView - the listing view

Customising IndexView - the listing view

For the sake of consistency, this section of the docs will refer to the listing
view as IndexView, because that is the view class that does all the heavy
lifting.

You can use the following attributes and methods on the ModelAdmin class to
alter how your model data is treated and represented by the IndexView.

	ModelAdmin.list_display

	ModelAdmin.list_filter

	ModelAdmin.search_fields

	ModelAdmin.search_handler_class

	ModelAdmin.extra_search_kwargs

	ModelAdmin.ordering

	ModelAdmin.list_per_page

	ModelAdmin.get_queryset()

	ModelAdmin.get_extra_attrs_for_row()

	ModelAdmin.get_extra_class_names_for_field_col()

	ModelAdmin.get_extra_attrs_for_field_col()

	wagtail.contrib.modeladmin.mixins.ThumbnailMixin

	ModelAdmin.list_display_add_buttons

	ModelAdmin.index_view_extra_css

	ModelAdmin.index_view_extra_js

	ModelAdmin.index_template_name

	ModelAdmin.index_view_class

ModelAdmin.list_display

Expected value: A list or tuple, where each item is the name of a field or
single-argument callable on your model, or a similarly simple method defined
on the ModelAdmin class itself.

Default value: ('__str__',)

Set list_display to control which fields are displayed in the IndexView
for your model.

You have three possible values that can be used in list_display:

	A field of the model. For example:

from wagtail.contrib.modeladmin.options import ModelAdmin
from .models import Person

class PersonAdmin(ModelAdmin):
 model = Person
 list_display = ('first_name', 'last_name')

	The name of a custom method on your ModelAdmin class, that accepts a
single parameter for the model instance. For example:

from wagtail.contrib.modeladmin.options import ModelAdmin
from .models import Person

class PersonAdmin(ModelAdmin):
 model = Person
 list_display = ('upper_case_name',)

 def upper_case_name(self, obj):
 return ("%s %s" % (obj.first_name, obj.last_name)).upper()
 upper_case_name.short_description = 'Name'

	The name of a method on your Model class that accepts only self as
an argument. For example:

from django.db import models
from wagtail.contrib.modeladmin.options import ModelAdmin

class Person(models.Model):
 name = models.CharField(max_length=50)
 birthday = models.DateField()

 def decade_born_in(self):
 return self.birthday.strftime('%Y')[:3] + "0's"
 decade_born_in.short_description = 'Birth decade'

class PersonAdmin(ModelAdmin):
 model = Person
 list_display = ('name', 'decade_born_in')

A few special cases to note about list_display:

	If the field is a ForeignKey, Django will display the output of
__str__() of the related object.

	If the string provided is a method of the model or ModelAdmin class,
Django will HTML-escape the output by default. To escape user input and
allow your own unescaped tags, use format_html(). For example:

from django.db import models
from django.utils.html import format_html
from wagtail.contrib.modeladmin.options import ModelAdmin

class Person(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 color_code = models.CharField(max_length=6)

 def colored_name(self):
 return format_html(
 '{} {}',
 self.color_code,
 self.first_name,
 self.last_name,
)

class PersonAdmin(ModelAdmin):
 model = Person
 list_display = ('first_name', 'last_name', 'colored_name')

	If the value of a field is None, an empty string, or an iterable
without elements, Wagtail will display a dash (-) for that column. You can
override this by setting empty_value_display on your ModelAdmin
class. For example:

from wagtail.contrib.modeladmin.options import ModelAdmin

class PersonAdmin(ModelAdmin):
 empty_value_display = 'N/A'
 ...

Or, if you’d like to change the value used depending on the field, you can
override ModelAdmin’s get_empty_value_display() method, like so:

from django.db import models
from wagtail.contrib.modeladmin.options import ModelAdmin

class Person(models.Model):
 name = models.CharField(max_length=100)
 nickname = models.CharField(blank=True, max_length=100)
 likes_cat_gifs = models.NullBooleanField()

class PersonAdmin(ModelAdmin):
 model = Person
 list_display = ('name', 'nickname', 'likes_cat_gifs')

 def get_empty_value_display(self, field_name=None):
 if field_name == 'nickname':
 return 'None given'
 if field_name == 'likes_cat_gifs':
 return 'Unanswered'
 return super().get_empty_value_display(field_name)

The __str__() method is just as valid
in list_display as any other model method, so it’s perfectly OK to do
this:

list_display = ('__str__', 'some_other_field')

By default, the ability to sort results by an item in list_display is
only offered when it’s a field that has an actual database value (because
sorting is done at the database level). However, if the output of the
method is representative of a database field, you can indicate this fact by
setting the admin_order_field attribute on that method, like so:

from django.db import models
from django.utils.html import format_html
from wagtail.contrib.modeladmin.options import ModelAdmin

class Person(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 color_code = models.CharField(max_length=6)

 def colored_first_name(self):
 return format_html(
 '{}',
 self.color_code,
 self.first_name,
)
 colored_first_name.admin_order_field = 'first_name'

class PersonAdmin(ModelAdmin):
 model = Person
 list_display = ('colored_first_name', 'last_name')

The above will tell Wagtail to order by the first_name field when
trying to sort by colored_first_name in the index view.

To indicate descending order with admin_order_field you can use a
hyphen prefix on the field name. Using the above example, this would look
like:

colored_first_name.admin_order_field = '-first_name'

admin_order_field supports query lookups to sort by values on related
models, too. This example includes an “author first name” column in the
list display and allows sorting it by first name:

from django.db import models

class Blog(models.Model):
 title = models.CharField(max_length=255)
 author = models.ForeignKey(Person, on_delete=models.CASCADE)

 def author_first_name(self, obj):
 return obj.author.first_name

 author_first_name.admin_order_field = 'author__first_name'

	Elements of list_display can also be properties. Please note however,
that due to the way properties work in Python, setting
short_description on a property is only possible when using the
property() function and not with the @property decorator.

For example:

from django.db import models
from wagtail.contrib.modeladmin.options import ModelAdmin

class Person(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)

 def full_name_property(self):
 return self.first_name + ' ' + self.last_name
 full_name_property.short_description = "Full name of the person"

 full_name = property(full_name_property)

class PersonAdmin(ModelAdmin):
 list_display = ('full_name',)

ModelAdmin.list_filter

Expected value: A list or tuple, where each item is the name of model field
of type BooleanField, CharField, DateField, DateTimeField,
IntegerField or ForeignKey.

Set list_filter to activate filters in the right sidebar of the list page
for your model. For example:

class PersonAdmin(ModelAdmin):
 list_filter = ('is_staff', 'company')

ModelAdmin.search_fields

Expected value: A list or tuple, where each item is the name of a model
field of type CharField, TextField, RichTextField or
StreamField.

Set search_fields to enable a search box at the top of the index page
for your model. You should add names of any fields on the model that should
be searched whenever somebody submits a search query using the search box.

Searching is handled via Django’s QuerySet API by default,
see ModelAdmin.search_handler_class about changing this behaviour.
This means by default it will work for all models, whatever search backend
your project is using, and without any additional setup or configuration.

ModelAdmin.search_handler_class

Expected value: A subclass of
wagtail.contrib.modeladmin.helpers.search.BaseSearchHandler

The default value is DjangoORMSearchHandler, which uses the Django ORM to
perform lookups on the fields specified by search_fields.

If you would prefer to use the built-in Wagtail search backend to search your
models, you can use the WagtailBackendSearchHandler class instead. For
example:

from wagtail.contrib.modeladmin.helpers import WagtailBackendSearchHandler

from .models import Person

class PersonAdmin(ModelAdmin):
 model = Person
 search_handler_class = WagtailBackendSearchHandler

Extra considerations when using WagtailBackendSearchHandler

ModelAdmin.search_fields is used differently

The value of search_fields is passed to the underlying search backend to
limit the fields used when matching. Each item in the list must be indexed
on your model using index.SearchField.

To allow matching on any indexed field, set the search_fields attribute
on your ModelAdmin class to None, or remove it completely.

Indexing extra fields using index.FilterField

The underlying search backend must be able to interpret all of the fields and
relationships used in the queryset created by IndexView, including those
used in prefetch() or select_related() queryset methods, or used in
list_display, list_filter or ordering.

Be sure to test things thoroughly in a development environment (ideally
using the same search backend as you use in production). Wagtail will raise
an IndexError if the backend encounters something it does not understand,
and will tell you what you need to change.

ModelAdmin.extra_search_kwargs

Expected value: A dictionary of keyword arguments that will be passed on to the search() method of
search_handler_class.

For example, to override the WagtailBackendSearchHandler default operator you could do the following:

from wagtail.contrib.modeladmin.helpers import WagtailBackendSearchHandler
from wagtail.search.utils import OR

from .models import IndexedModel

class DemoAdmin(ModelAdmin):
 model = IndexedModel
 search_handler_class = WagtailBackendSearchHandler
 extra_search_kwargs = {'operator': OR}

ModelAdmin.ordering

Expected value: A list or tuple in the same format as a model’s
ordering [https://docs.djangoproject.com/en/stable/ref/models/options/#django.db.models.Options.ordering] parameter.

Set ordering to specify the default ordering of objects when listed by
IndexView. If not provided, the model’s default ordering will be respected.

If you need to specify a dynamic order (for example, depending on user or
language) you can override the get_ordering() method instead.

ModelAdmin.list_per_page

Expected value: A positive integer

Set list_per_page to control how many items appear on each paginated page
of the index view. By default, this is set to 100.

ModelAdmin.get_queryset()

Must return: A QuerySet

The get_queryset method returns the ‘base’ QuerySet for your model, to
which any filters and search queries are applied. By default, the all()
method of your model’s default manager is used. But, if for any reason you
only want a certain sub-set of objects to appear in the IndexView listing,
overriding the get_queryset method on your ModelAdmin class can help
you with that. The method takes an HttpRequest object as a parameter, so
limiting objects by the current logged-in user is possible.

For example:

from django.db import models
from wagtail.contrib.modeladmin.options import ModelAdmin

class Person(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 managed_by = models.ForeignKey(`auth.User`, on_delete=models.CASCADE)

class PersonAdmin(ModelAdmin):
 model = Person
 list_display = ('first_name', 'last_name')

 def get_queryset(self, request):
 qs = super().get_queryset(request)
 # Only show people managed by the current user
 return qs.filter(managed_by=request.user)

ModelAdmin.get_extra_attrs_for_row()

Must return: A dictionary

The get_extra_attrs_for_row method allows you to add html attributes to
the opening <tr> tag for each result, in addition to the data-object_pk and
class attributes already added by the result_row_display template tag.

If you want to add additional CSS classes, simply provide those class names
as a string value using the 'class' key, and the odd/even will be appended
to your custom class names when rendering.

For example, if you wanted to add some additional class names based on field
values, you could do something like:

from decimal import Decimal
from django.db import models
from wagtail.contrib.modeladmin.options import ModelAdmin

class BankAccount(models.Model):
 name = models.CharField(max_length=50)
 account_number = models.CharField(max_length=50)
 balance = models.DecimalField(max_digits=5, num_places=2)

class BankAccountAdmin(ModelAdmin):
 list_display = ('name', 'account_number', 'balance')

 def get_extra_attrs_for_row(self, obj, context):
 if obj.balance < Decimal('0.00'):
 classname = 'balance-negative'
 else:
 classname = 'balance-positive'
 return {
 'class': classname,
 }

ModelAdmin.get_extra_class_names_for_field_col()

Must return: A list

The get_extra_class_names_for_field_col method allows you to add additional
CSS class names to any of the columns defined by list_display for your
model. The method takes two parameters:

	obj: the object being represented by the current row

	field_name: the item from list_display being represented by the
current column

For example, if you’d like to apply some conditional formatting to a cell
depending on the row’s value, you could do something like:

from decimal import Decimal
from django.db import models
from wagtail.contrib.modeladmin.options import ModelAdmin

class BankAccount(models.Model):
 name = models.CharField(max_length=50)
 account_number = models.CharField(max_length=50)
 balance = models.DecimalField(max_digits=5, num_places=2)

class BankAccountAdmin(ModelAdmin):
 list_display = ('name', 'account_number', 'balance')

 def get_extra_class_names_for_field_col(self, obj, field_name):
 field_name == 'balance':
 if balance <= Decimal('-100.00'):
 return ['brand-danger']
 if balance <= Decimal('-0.00'):
 return ['brand-warning']
 if balance <= Decimal('-50.00'):
 return ['brand-info']
 else:
 return ['brand-success']
 return []

ModelAdmin.get_extra_attrs_for_field_col()

Must return: A dictionary

The get_extra_attrs_for_field_col method allows you to add additional HTML
attributes to any of the columns defined in list_display. Like the
get_extra_class_names_for_field_col method above, this method takes two
parameters:

	obj: the object being represented by the current row

	field_name: the item from list_display being represented by the
current column

For example, you might like to add some tooltip text to a certain column, to
help give the value more context:

from django.db import models
from wagtail.contrib.modeladmin.options import ModelAdmin

class Person(models.Model):
 name = models.CharField(max_length=100)
 likes_cat_gifs = models.NullBooleanField()

class PersonAdmin(ModelAdmin):
 model = Person
 list_display = ('name', 'likes_cat_gifs')

 def get_extra_attrs_for_field_col(self, obj, field_name=None):
 attrs = super().get_extra_attrs_for_field_col(obj, field_name)
 if field_name == 'likes_cat_gifs' and obj.likes_cat_gifs is None:
 attrs.update({
 'title': (
 'The person was shown several cat gifs, but failed to '
 'indicate a preference.'
),
 })
 return attrs

Or you might like to add one or more data attributes to help implement some
kind of interactivity using JavaScript:

from django.db import models
from wagtail.contrib.modeladmin.options import ModelAdmin

class Event(models.Model):
 title = models.CharField(max_length=255)
 start_date = models.DateField()
 end_date = models.DateField()
 start_time = models.TimeField()
 end_time = models.TimeField()

class EventAdmin(ModelAdmin):
 model = Event
 list_display = ('title', 'start_date', 'end_date')

 def get_extra_attrs_for_field_col(self, obj, field_name=None):
 attrs = super().get_extra_attrs_for_field_col(obj, field_name)
 if field_name == 'start_date':
 # Add the start time as data to the 'start_date' cell
 attrs.update({ 'data-time': obj.start_time.strftime('%H:%M') })
 elif field_name == 'end_date':
 # Add the end time as data to the 'end_date' cell
 attrs.update({ 'data-time': obj.end_time.strftime('%H:%M') })
 return attrs

wagtail.contrib.modeladmin.mixins.ThumbnailMixin

If you’re using wagtailimages.Image to define an image for each item in
your model, ThumbnailMixin can help you add thumbnail versions of that
image to each row in IndexView. To use it, simply extend ThumbnailMixin
as well as ModelAdmin when defining your ModelAdmin class, and
change a few attributes to change the thumbnail to your liking, like so:

from django.db import models
from wagtail.contrib.modeladmin.mixins import ThumbnailMixin
from wagtail.contrib.modeladmin.options import ModelAdmin

class Person(models.Model):
 name = models.CharField(max_length=255)
 avatar = models.ForeignKey('wagtailimages.Image', on_delete=models.SET_NULL, null=True)
 likes_cat_gifs = models.NullBooleanField()

class PersonAdmin(ThumbnailMixin, ModelAdmin):

 # Add 'admin_thumb' to list_display, where you want the thumbnail to appear
 list_display = ('admin_thumb', 'name', 'likes_cat_gifs')

 # Optionally tell IndexView to add buttons to a different column (if the
 # first column contains the thumbnail, the buttons are likely better off
 # displayed elsewhere)
 list_display_add_buttons = 'name'

 """
 Set 'thumb_image_field_name' to the name of the ForeignKey field that
 links to 'wagtailimages.Image'
 """
 thumb_image_field_name = 'avatar'

 # Optionally override the filter spec used to create each thumb
 thumb_image_filter_spec = 'fill-100x100' # this is the default

 # Optionally override the 'width' attribute value added to each img tag
 thumb_image_width = 50 # this is the default

 # Optionally override the class name added to each img tag
 thumb_classname = 'admin-thumb' # this is the default

 # Optionally override the text that appears in the column header
 thumb_col_header_text = 'image' # this is the default

 # Optionally specify a fallback image to be used when the object doesn't
 # have an image set, or the image has been deleted. It can an image from
 # your static files folder, or an external URL.
 thumb_default = 'https://lorempixel.com/100/100'

ModelAdmin.list_display_add_buttons

Expected value: A string matching one of the items in list_display.

If for any reason you’d like to change which column the action buttons appear
in for each row, you can specify a different column using
list_display_add_buttons on your ModelAdmin class. The value must
match one of the items your class’s list_display attribute. By default,
buttons are added to the first column of each row.

See the ThumbnailMixin example above to see how
list_display_add_buttons can be used.

ModelAdmin.index_view_extra_css

Expected value: A list of path names of additional stylesheets to be added
to the IndexView

See the following part of the docs to find out more:
Adding additional stylesheets and/or JavaScript

ModelAdmin.index_view_extra_js

Expected value: A list of path names of additional js files to be added
to the IndexView

See the following part of the docs to find out more:
Adding additional stylesheets and/or JavaScript

ModelAdmin.index_template_name

Expected value: The path to a custom template to use for IndexView

See the following part of the docs to find out more:
Overriding templates

ModelAdmin.index_view_class

Expected value: A custom view class to replace
modeladmin.views.IndexView

See the following part of the docs to find out more:
Overriding views

 Customising CreateView, EditView and DeleteView

Customising CreateView, EditView and DeleteView

NOTE: modeladmin only provides ‘create’, ‘edit’ and ‘delete’
functionality for non page type models (i.e. models that do not extend
wagtailcore.models.Page). If your model is a ‘page type’ model, customising
any of the following will not have any effect:

Changing which fields appear in CreateView & EditView

edit_handler can be used on any Django models.Model class, just like it
can be used for Page models or other models registered as Snippets in
Wagtail.

To change the way your MyPageModel is displayed in the CreateView and the
EditView, simply define an edit_handler or panels attribute on your
model class.

class MyPageModel(models.Model):
 first_name = models.CharField(max_length=100)
 last_name = models.CharField(max_length=100)
 address = models.TextField()

 panels = [
 MultiFieldPanel([
 FieldRowPanel([
 FieldPanel('first_name', classname='fn'),
 FieldPanel('last_name', classname='ln'),
]),
 FieldPanel('address', classname='custom1',))
]

Or alternatively:

class MyPageModel(models.Model):
 first_name = models.CharField(max_length=100)
 last_name = models.CharField(max_length=100)
 address = models.TextField()

 custom_panels = [
 MultiFieldPanel([
 FieldRowPanel([
 FieldPanel('first_name', classname='fn'),
 FieldPanel('last_name', classname='ln'),
]),
 FieldPanel('address', classname='custom1',))
]
 edit_handler = ObjectList(custom_panels)
 # or
 edit_handler = TabbedInterface([
 ObjectList(custom_panels, heading='First Tab'),
 ObjectList(...)
])

edit_handler and panels can alternatively be
defined on a ModelAdmin definition. This feature is especially useful
for use cases where you have to work with models that are
‘out of reach’ (due to being part of a third-party package, for example).

class BookAdmin(ModelAdmin):
 model = Book

 panels = [
 FieldPanel('title'),
 FieldPanel('author'),
]

Or alternatively:

class BookAdmin(ModelAdmin):
 model = Book

 custom_panels = [
 FieldPanel('title'),
 FieldPanel('author'),
]
 edit_handler = ObjectList(custom_panels)

ModelAdmin.form_view_extra_css

Expected value: A list of path names of additional stylesheets to be added
to CreateView and EditView

See the following part of the docs to find out more:
Adding additional stylesheets and/or JavaScript

ModelAdmin.form_view_extra_js

Expected value: A list of path names of additional js files to be added
to CreateView and EditView

See the following part of the docs to find out more:
Adding additional stylesheets and/or JavaScript

ModelAdmin.create_template_name

Expected value: The path to a custom template to use for CreateView

See the following part of the docs to find out more:
Overriding templates

ModelAdmin.create_view_class

Expected value: A custom view class to replace
modeladmin.views.CreateView

See the following part of the docs to find out more:
Overriding views

ModelAdmin.edit_template_name

Expected value: The path to a custom template to use for EditView

See the following part of the docs to find out more:
Overriding templates

ModelAdmin.edit_view_class

Expected value: A custom view class to replace
modeladmin.views.EditView

See the following part of the docs to find out more:
Overriding views

ModelAdmin.delete_template_name

Expected value: The path to a custom template to use for DeleteView

See the following part of the docs to find out more:
Overriding templates

ModelAdmin.delete_view_class

Expected value: A custom view class to replace
modeladmin.views.DeleteView

See the following part of the docs to find out more:
Overriding views

ModelAdmin.form_fields_exclude

Expected value: A list or tuple of fields names

When using CreateView or EditView to create or update model instances, this
value will be passed to the edit form, so that any named fields will be
excluded from the form. This is particularly useful when registering ModelAdmin
classes for models from third-party apps, where defining panel configurations
on the Model itself is more complicated.

ModelAdmin.get_edit_handler()

Must return: An instance of wagtail.admin.edit_handlers.ObjectList

Returns the appropriate edit_handler for the modeladmin class.
edit_handlers can be defined either on the model itself or on the
modeladmin (as property edit_handler or panels). Falls back to
extracting panel / edit handler definitions from the model class.

 Enabling & customising InspectView

Enabling & customising InspectView

The InspectView is disabled by default, as it’s not often useful for most
models. However, if you need a view that enables users to view more detailed
information about an instance without the option to edit it, you can easily
enable the inspect view by setting inspect_view_enabled=True on your
ModelAdmin class.

When InspectView is enabled, an ‘Inspect’ button will automatically appear for each row in
your index / listing view, linking to a new page that shows a list of
field values for that particular object.

By default, all ‘concrete’ fields (where the field value is stored as a column
in the database table for your model) will be shown. You can customise what
values are displayed by adding the following attributes to your ModelAdmin
class:

	ModelAdmin.inspect_view_fields

	ModelAdmin.inspect_view_fields_exclude

	ModelAdmin.inspect_view_extra_css

	ModelAdmin.inspect_view_extra_js

	ModelAdmin.inspect_template_name

	ModelAdmin.inspect_view_class

ModelAdmin.inspect_view_fields

Expected value: A list or tuple, where each item is the name of a field
or attribute on the instance that you’d like InpectView to render.

A sensible value will be rendered for most field types.

If you have wagtail.images installed, and the value happens to be an
instance of wagtailimages.models.Image (or a custom model that subclasses
wagtailimages.models.AbstractImage), a thumbnail of that image will be
rendered.

If you have wagtail.documents installed, and the value happens to be an
instance of wagtaildocs.models.Document (or a custom model that subclasses
wagtaildocs.models.AbstractDocument), a link to that document will be
rendered, along with the document title, file extension and size.

ModelAdmin.inspect_view_fields_exclude

Expected value: A list or tuple, where each item is the name of a field
that you’d like to exclude from InpectView

Note: If both inspect_view_fields and inspect_view_fields_exclude
are set, inspect_view_fields_exclude will be ignored.

ModelAdmin.inspect_view_extra_css

Expected value: A list of path names of additional stylesheets to be added
to the InspectView

See the following part of the docs to find out more:
Adding additional stylesheets and/or JavaScript

ModelAdmin.inspect_view_extra_js

Expected value: A list of path names of additional js files to be added
to the InspectView

See the following part of the docs to find out more:
Adding additional stylesheets and/or JavaScript

ModelAdmin.inspect_template_name

Expected value: The path to a custom template to use for InspectView

See the following part of the docs to find out more:
Overriding templates

ModelAdmin.inspect_view_class

Expected value: A custom view class to replace
modeladmin.views.InspectView

See the following part of the docs to find out more:
Overriding views

 Customising ChooseParentView

Customising ChooseParentView

When adding a new page via Wagtail’s explorer view, you essentially choose
where you want to add a new page by navigating the relevant part of the page
tree and choosing to ‘add a child page’ to your chosen parent page. Wagtail
then asks you to select what type of page you’d like to add.

When adding a page from a ModelAdmin list page, we know what type of page
needs to be added, but we might not automatically know where in the page tree
it should be added. If there’s only one possible choice of parent for a new page
(as defined by setting parent_page_types and subpage_types attributes
on your models), then we skip a step and use that as the parent. Otherwise, the
user must specify a parent page using modeladmin’s ChooseParentView.

It should be very rare that you need to customise this view, but in case you
do, modeladmin offers the following attributes that you can override:

	ModelAdmin.choose_parent_template_name

	ModelAdmin.choose_parent_view_class

ModelAdmin.choose_parent_template_name

Expected value: The path to a custom template to use for
ChooseParentView

See the following part of the docs to find out more:
Overriding templates

ModelAdmin.choose_parent_view_class

Expected value: A custom view class to replace
modeladmin.views.ChooseParentView

See the following part of the docs to find out more:
Overriding views

 Additional tips and tricks

Additional tips and tricks

This section explores some of modeladmin’s lesser-known features, and provides examples to help with modeladmin customisation. More pages will be added in future.

	Reversing ModelAdmin URLs

 Reversing ModelAdmin URLs

Reversing ModelAdmin URLs

It’s sometimes useful to be able to derive the index (listing) or
create URLs for a model along with the edit, delete or
inspect URL for a specific object in a model you have registered via
the modeladmin app.

Wagtail itself does this by instantiating each ModelAdmin class you have
registered, and using the url_helper attribute of each instance to
determine what these URLs are.

You can take a similar approach in your own code too, by creating a
ModelAdmin instance yourself, and using its url_helper
to determine URLs.

See below for some examples:

	Getting the edit or delete or inspect URL for an object

	Getting the index or create URL for a model

Getting the edit or delete or inspect URL for an object

In this example, we will provide a quick way to edit the Author that is
linked to a blog post from the admin page listing menu. We have defined
an AuthorModelAdmin class and registered it with Wagtail to allow
Author objects to be administered via the admin area. The BlogPage
model has an author field (a ForeignKey to the Author model)
to allow a single author to be specified for each post.

file: wagtail_hooks.py

from wagtail.admin.widgets import PageListingButton
from wagtail.contrib.modeladmin.options import ModelAdmin, modeladmin_register
from wagtail.core import hooks

Author & BlogPage model not shown in this example
from models import Author

ensure our modeladmin is created
class AuthorModelAdmin(ModelAdmin):
 model = Author
 menu_order = 200

Creating an instance of `AuthorModelAdmin`
author_modeladmin = AuthorModelAdmin()

@hooks.register('register_page_listing_buttons')
def add_author_edit_buttons(page, page_perms, is_parent=False):
 """
 For pages that have an author, add an additional button to the page listing,
 linking to the 'edit' page for that author.
 """
 author_id = getattr(page, 'author_id', None)
 if author_id:
 # the url helper will return something like: /admin/my-app/author/edit/2/
 author_edit_url = author_modeladmin.url_helper.get_action_url('edit', author_id)
 yield PageListingButton('Edit Author', author_edit_url, priority=10)

modeladmin_register(AuthorModelAdmin)

As you can see from the example above, when using get_action_url() to
generate object-specific URLs, the target object’s primary key value must be supplied
so that it can be included in the resulting URL (e.g. "/admin/my-app/author/edit/2/").
The following object-specific action names are supported by get_action_url():

	'edit'

	Returns a URL for updating a specific object.

	'delete'

	Returns a URL for deleting a specific object.

	'inspect'

	Returns a URL for viewing details of a specific object.
NOTE: This will only work if inspect_view_enabled is set to
True on your ModelAdmin class.

Note

If you are using string values as primary keys for you model, you may need to handle
cases where the key contains characters that are not URL safe. Only alphanumerics
([0-9a-zA-Z]), or the following special characters are safe:
$, -, _, ., +, !, *, ', (,).

django.contrib.admin.utils.quote() can be used to safely encode these primary
key values before passing them to get_action_url(). Failure to do this may result
in Wagtail not being able to recognise the primary key when the URL is visited,
resulting in 404 errors.

Getting the index or create URL for a model

There are URLs available for the model listing view (action is 'index') and
the create model view (action is 'create'). Each of these has an equivalent
shortcut available; url_helper.index_url and url_helper.create_url.

For example:

from .wagtail_hooks import AuthorModelAdmin

url_helper = AuthorModelAdmin().url_helper

index_url = url_helper.get_action_url('index')
OR we can use the 'index_url' shortcut
also_index_url = url_helper.index_url # note: do not call this property as a function
both will output /admin/my-app/author

create_url = url_helper.get_action_url('create')
OR we can use the 'create_url' shortcut
also_create_url = url_helper.create_url # note: do not call this property as a function
both will output /admin/my-app/author/create

Note

If you have registered a page type with modeladmin (e.g. BlogPage), and pages
of that type can be added to more than one place in the page tree, when a user visits
the create URL, they’ll be automatically redirected to another view to choose a
parent for the new page. So, this isn’t something you need to check or cater for in
your own code.

To customise url_helper behaviour, see ModelAdmin.url_helper_class.

 PostgreSQL search engine

PostgreSQL search engine

This contrib module provides a search engine backend for Wagtail using
PostgreSQL full-text search capabilities [https://www.postgresql.org/docs/current/static/textsearch.html].

Warning

You can only use this module to index data from a PostgreSQL database.

Features:

	Supports all the search features available in Wagtail.

	Easy to install and adds no external dependency or service.

	Excellent performance for sites with up to 200 000 pages.
Stays decent for sites up to a million pages.

	Faster to reindex than Elasticsearch if you use PostgreSQL 9.5 or more.

The only known downsides concern :

Downsides:

	SearchField(partial_match=True) is not handled.

	Due to a PostgreSQL limitation, SearchField(boost=…) is only partially
respected. It is changed so that there can only be 4 different boosts.
If you define 4 or less different boosts,
everything will be perfectly accurate.
However, your search will be a little less accurate if you define more than
4 different boosts. That being said, it will work and be roughly the same.

	When Specifying the fields to search, the index is not used,
so it will be slow on huge sites.

	Still when Specifying the fields to search, you cannot search
on a specific method.

Installation

Add 'wagtail.contrib.postgres_search', anywhere in your INSTALLED_APPS:

INSTALLED_APPS = [
 ...
 'wagtail.contrib.postgres_search',
 ...
]

Then configure Wagtail to use it as a search backend.
Give it the alias ‘default’ if you want it to be the default search backend:

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': 'wagtail.contrib.postgres_search.backend',
 },
}

After installing the module, run python manage.py migrate to create the necessary postgres_search_indexentry table.

You then need to index data inside this backend using
the update_index command. You can reuse this command whenever
you want. However, it should not be needed after a first usage since
the search engine is automatically updated when data is modified.
To disable this behaviour, see AUTO_UPDATE.

Configuration

Language / PostgreSQL search configuration

Use the additional 'SEARCH_CONFIG' key to define which PostgreSQL
search configuration should be used. For example:

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': 'wagtail.contrib.postgres_search.backend',
 'SEARCH_CONFIG': 'english',
 }
}

As you can deduce, a PostgreSQL search configuration is mostly used to define
rules for a language, English in this case. A search configuration consists
in a compilation of algorithms (parsers & analysers)
and language specifications (stop words, stems, dictionaries, synonyms,
thesauruses, etc.).

A few search configurations are already defined by default in PostgreSQL.
You can list them using sudo -u postgres psql -c "\dF" in a Unix shell
or by using this SQL query: SELECT cfgname FROM pg_catalog.pg_ts_config.

These already-defined search configurations are decent, but they’re basic
compared to commercial search engines.
If you want a nicer support of your language, you will have to create
your own PostgreSQL search configuration. See the PostgreSQL documentation for
an example [https://www.postgresql.org/docs/current/static/textsearch-configuration.html],
the list of parsers [https://www.postgresql.org/docs/current/static/textsearch-parsers.html],
and a guide to use dictionaries [https://www.postgresql.org/docs/current/static/textsearch-dictionaries.html].

Atomic rebuild

Like the Elasticsearch backend, this backend supports
ATOMIC_REBUILD:

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': 'wagtail.contrib.postgres_search.backend',
 'ATOMIC_REBUILD': True,
 }
}

This is nearly useless with this backend. In Elasticsearch, all data
is removed before rebuilding the index. But in this PostgreSQL backend,
only objects no longer in the database are removed. Then the index is
progressively updated, with no moment where the index is empty.

However, if you want to be extra sure that nothing wrong happens while updating
the index, you can use atomic rebuild. The index will be rebuilt, but nobody
will have access to it until reindexing is complete. If any error occurs during
the operation, all changes to the index are reverted
as if reindexing never happened.

 Promoted search results

Promoted search results

The searchpromotions module provides the models and user interface for managing “Promoted search results” and displaying them in a search results page.

“Promoted search results” allow editors to explicitly link relevant content to search terms, so results pages can contain curated content in addition to results from the search engine.

Installation

The searchpromotions module is not enabled by default. To install it, add wagtail.contrib.search_promotions to INSTALLED_APPS in your project’s Django settings file.

INSTALLED_APPS = [
 ...

 'wagtail.contrib.search_promotions',
]

This app contains migrations so make sure you run the migrate django-admin command after installing.

Usage

Once installed, a new menu item called “Promoted search results” should appear in the “Settings” menu. This is where you can assign pages to popular search terms.

Displaying on a search results page

To retrieve a list of promoted search results for a particular search query, you can use the {% get_search_promotions %} template tag from the wagtailsearchpromotions_tags templatetag library:

{% load wagtailcore_tags wagtailsearchpromotions_tags %}

...

{% get_search_promotions search_query as search_promotions %}

 {% for search_promotion in search_promotions %}

 <h2>{{ search_promotion.page.title }}</h2>
 <p>{{ search_promotion.description }}</p>

 {% endfor %}

 TableBlock

TableBlock

The TableBlock module provides an HTML table block type for StreamField. This module uses handsontable 6.2.2 [https://handsontable.com/] to provide users with the ability to create and edit HTML tables in Wagtail. Table blocks provides a caption field for accessibility.

[image: ../../_images/screen40_table_block.png]

Installation

Add "wagtail.contrib.table_block" to your INSTALLED_APPS:

INSTALLED_APPS = [
 ...

 "wagtail.contrib.table_block",
]

Basic Usage

After installation, the TableBlock module can be used in a similar fashion to other StreamField blocks in the Wagtail core.

Import the TableBlock from wagtail.contrib.table_block.blocks import TableBlock and add it to your StreamField declaration.

class DemoStreamBlock(StreamBlock):
 ...
 table = TableBlock()

Then, on your page template, the {% include_block %} tag (called on either the individual block, or the StreamField value as a whole) will render any table blocks it encounters as an HTML <table> element:

{% load wagtailcore_tags %}

{% include_block page.body %}

Or:

{% load wagtailcore_tags %}

{% for block in page.body %}
 {% if block.block_type == 'table' %}
 {% include_block block %}
 {% else %}
 {# rendering for other block types #}
 {% endif %}
{% endfor %}

Advanced Usage

Default Configuration

When defining a TableBlock, Wagtail provides the ability to pass an optional table_options dictionary. The default TableBlock dictionary looks like this:

default_table_options = {
 'minSpareRows': 0,
 'startRows': 3,
 'startCols': 3,
 'colHeaders': False,
 'rowHeaders': False,
 'contextMenu': [
 'row_above',
 'row_below',
 '---------',
 'col_left',
 'col_right',
 '---------',
 'remove_row',
 'remove_col',
 '---------',
 'undo',
 'redo'
],
 'editor': 'text',
 'stretchH': 'all',
 'height': 108,
 'language': language,
 'renderer': 'text',
 'autoColumnSize': False,
}

Configuration Options

Every key in the table_options dictionary maps to a handsontable [https://handsontable.com/] option. These settings can be changed to alter the behaviour of tables in Wagtail. The following options are available:

	minSpareRows [https://handsontable.com/docs/6.2.2/Options.html#minSpareRows] - The number of rows to append to the end of an empty grid. The default setting is 0.

	startRows [https://handsontable.com/docs/6.2.2/Options.html#startRows] - The default number of rows for a new table.

	startCols [https://handsontable.com/docs/6.2.2/Options.html#startCols] - The default number of columns for new tables.

	colHeaders [https://handsontable.com/docs/6.2.2/Options.html#colHeaders] - Can be set to True or False. This setting designates if new tables should be created with column headers. Note: this only sets the behaviour for newly created tables. Page editors can override this by checking the the “Column header” checkbox in the table editor in the Wagtail admin.

	rowHeaders [https://handsontable.com/docs/6.2.2/Options.html#rowHeaders] - Operates the same as colHeaders to designate if new tables should be created with the first column as a row header. Just like colHeaders this option can be overridden by the page editor in the Wagtail admin.

	contextMenu [https://handsontable.com/docs/6.2.2/Options.html#contextMenu] - Enables or disables the Handsontable right-click menu. By default this is set to True. Alternatively you can provide a list or a dictionary with [specific options](https://handsontable.com/docs/6.2.2/demo-context-menu.html#page-specific).

	editor [https://handsontable.com/docs/6.2.2/Options.html#editor] - Defines the editor used for table cells. The default setting is text.

	stretchH [https://handsontable.com/docs/6.2.2/Options.html#stretchH] - Sets the default horizontal resizing of tables. Options include, ‘none’, ‘last’, and ‘all’. By default TableBlock uses ‘all’ for the even resizing of columns.

	height [https://handsontable.com/docs/6.2.2/Options.html#height] - The default height of the grid. By default TableBlock sets the height to 108 for the optimal appearance of new tables in the editor. This is optimized for tables with startRows set to 3. If you change the number of startRows in the configuration, you might need to change the height setting to improve the default appearance in the editor.

	language [https://handsontable.com/docs/6.2.2/Options.html#language] - The default language setting. By default TableBlock tries to get the language from django.utils.translation.get_language. If needed, this setting can be overridden here.

	renderer [https://handsontable.com/docs/6.2.2/Options.html#renderer] - The default setting Handsontable uses to render the content of table cells.

	autoColumnSize [https://handsontable.com/docs/6.2.2/Options.html#autoColumnSize] - Enables or disables the autoColumnSize plugin. The TableBlock default setting is False.

A complete list of handsontable options [https://handsontable.com/docs/6.2.2/Options.html] can be found on the Handsontable website.

Changing the default table_options

To change the default table options just pass a new table_options dictionary when a new TableBlock is declared.

new_table_options = {
 'minSpareRows': 0,
 'startRows': 6,
 'startCols': 4,
 'colHeaders': False,
 'rowHeaders': False,
 'contextMenu': True,
 'editor': 'text',
 'stretchH': 'all',
 'height': 216,
 'language': 'en',
 'renderer': 'text',
 'autoColumnSize': False,
}

class DemoStreamBlock(StreamBlock):
 ...
 table = TableBlock(table_options=new_table_options)

Supporting cell alignement

You can activate the alignment option by setting a custom contextMenu which allows you to set the alignment on a cell selection.
HTML classes set by handsontable will be kept on the rendered block. You’ll be then able to apply your own custom CSS rules to preserve the style. Those class names are:

	Horizontal: htLeft, htCenter, htRight, htJustify

	Vertical: htTop, htMiddle, htBottom

new_table_options = {
 'contextMenu': [
 'row_above',
 'row_below',
 '---------',
 'col_left',
 'col_right',
 '---------',
 'remove_row',
 'remove_col',
 '---------',
 'undo',
 'redo',
 '---------',
 'copy',
 'cut'
 '---------',
 'alignment',
],
}

class DemoStreamBlock(StreamBlock):
 ...
 table = TableBlock(table_options=new_table_options)

 Management commands

Management commands

publish_scheduled_pages

$./manage.py publish_scheduled_pages

This command publishes, updates or unpublishes pages that have had these actions scheduled by an editor. We recommend running this command once an hour.

fixtree

$./manage.py fixtree

This command scans for errors in your database and attempts to fix any issues it finds.

move_pages

$ manage.py move_pages from to

This command moves a selection of pages from one section of the tree to another.

Options:

	from
This is the id of the page to move pages from. All descendants of this page will be moved to the destination. After the operation is complete, this page will have no children.

	to
This is the id of the page to move pages to.

update_index

$./manage.py update_index [--backend <backend name>]

This command rebuilds the search index from scratch. It is not required when using the database search backend (wagtail.search.backends.db).

It is recommended to run this command once a week and at the following times:

	whenever any pages have been created through a script (after an import, for example)

	whenever any changes have been made to models or search configuration

The search may not return any results while this command is running, so avoid running it at peak times.

Specifying which backend to update

By default, update_index will rebuild all the search indexes listed in WAGTAILSEARCH_BACKENDS.

If you have multiple backends and would only like to update one of them, you can use the --backend option.

For example, to update just the default backend:

$ python manage.py update_index --backend default

The --chunk_size option can be used to set the size of chunks that are indexed at a time. This defaults to
1000 but may need to be reduced for larger document sizes.

Indexing the schema only

You can prevent the update_index command from indexing any data by using the --schema-only option:

$ python manage.py update_index --schema-only

wagtail_update_index

An alias for the update_index command that can be used when another installed package (such as Haystack [https://haystacksearch.org/]) provides a command named update_index. In this case, the other package’s entry in INSTALLED_APPS should appear above wagtail.search so that its update_index command takes precedence over Wagtail’s.

search_garbage_collect

$./manage.py search_garbage_collect

Wagtail keeps a log of search queries that are popular on your website. On high traffic websites, this log may get big and you may want to clean out old search queries. This command cleans out all search query logs that are more than one week old (or a number of days configurable through the WAGTAILSEARCH_HITS_MAX_AGE setting).

 Hooks

Hooks

On loading, Wagtail will search for any app with the file wagtail_hooks.py and execute the contents. This provides a way to register your own functions to execute at certain points in Wagtail’s execution, such as when a page is saved or when the main menu is constructed.

Note

Hooks are typically used to customise the view-level behaviour of the Wagtail admin and front-end. For customisations that only deal with model-level behaviour - such as calling an external service when a page or document is added - it is often better to use Django’s signal mechanism [https://docs.djangoproject.com/en/stable/topics/signals/] (see also: Wagtail signals), as these are not dependent on a user taking a particular path through the admin interface.

Registering functions with a Wagtail hook is done through the @hooks.register decorator:

from wagtail.core import hooks

@hooks.register('name_of_hook')
def my_hook_function(arg1, arg2...)
 # your code here

Alternatively, hooks.register can be called as an ordinary function, passing in the name of the hook and a handler function defined elsewhere:

hooks.register('name_of_hook', my_hook_function)

If you need your hooks to run in a particular order, you can pass the order parameter:

@hooks.register('name_of_hook', order=1) # This will run after every hook in the wagtail core
def my_hook_function(arg1, arg2...)
 # your code here

@hooks.register('name_of_hook', order=-1) # This will run before every hook in the wagtail core
def my_other_hook_function(arg1, arg2...)
 # your code here

@hooks.register('name_of_hook', order=2) # This will run after `my_hook_function`
def yet_another_hook_function(arg1, arg2...)
 # your code here

The available hooks are listed below.

	Admin modules

	Editor interface

	Editor workflow

	Admin workflow

	Choosers

	Page explorer

	Page serving

	Document serving

Admin modules

Hooks for building new areas of the admin interface (alongside pages, images, documents and so on).

construct_homepage_panels

Add or remove panels from the Wagtail admin homepage. The callable passed into this hook should take a request object and a list of panels, objects which have a render() method returning a string. The objects also have an order property, an integer used for ordering the panels. The default panels use integers between 100 and 300. Hook functions should modify the panels list in-place as required.

from django.utils.safestring import mark_safe

from wagtail.core import hooks

class WelcomePanel:
 order = 50

 def render(self):
 return mark_safe("""
 <section class="panel summary nice-padding">
 <h3>No, but seriously -- welcome to the admin homepage.</h3>
 </section>
 """)

@hooks.register('construct_homepage_panels')
def add_another_welcome_panel(request, panels):
 panels.append(WelcomePanel())

construct_homepage_summary_items

Add or remove items from the ‘site summary’ bar on the admin homepage (which shows the number of pages and other object that exist on the site). The callable passed into this hook should take a request object and a list of SummaryItem objects to be modified as required. These objects have a render() method, which returns an HTML string, and an order property, which is an integer that specifies the order in which the items will appear.

construct_main_menu

Called just before the Wagtail admin menu is output, to allow the list of menu items to be modified. The callable passed to this hook will receive a request object and a list of menu_items, and should modify menu_items in-place as required. Adding menu items should generally be done through the register_admin_menu_item hook instead - items added through construct_main_menu will be missing any associated JavaScript includes, and their is_shown check will not be applied.

from wagtail.core import hooks

@hooks.register('construct_main_menu')
def hide_explorer_menu_item_from_frank(request, menu_items):
 if request.user.username == 'frank':
 menu_items[:] = [item for item in menu_items if item.name != 'explorer']

describe_collection_contents

Called when Wagtail needs to find out what objects exist in a collection, if any. Currently this happens on the confirmation before deleting a collection, to ensure that non-empty collections cannot be deleted. The callable passed to this hook will receive a collection object, and should return either None (to indicate no objects in this collection), or a dict containing the following keys:

	count

	A numeric count of items in this collection

	count_text

	A human-readable string describing the number of items in this collection, such as “3 documents”. (Sites with multi-language support should return a translatable string here, most likely using the django.utils.translation.ungettext function.)

	url (optional)

	A URL to an index page that lists the objects being described.

register_account_menu_item

Add an item to the “Account settings” page within the Wagtail admin.
The callable for this hook should return a dict with the keys
url, label and help_text. For example:

from django.urls import reverse
from wagtail.core import hooks

@hooks.register('register_account_menu_item')
def register_account_delete_account(request):
 return {
 'url': reverse('delete-account'),
 'label': 'Delete account',
 'help_text': 'This permanently deletes your account.'
 }

register_admin_menu_item

Add an item to the Wagtail admin menu. The callable passed to this hook must return an instance of wagtail.admin.menu.MenuItem. New items can be constructed from the MenuItem class by passing in a label which will be the text in the menu item, and the URL of the admin page you want the menu item to link to (usually by calling reverse() on the admin view you’ve set up). Additionally, the following keyword arguments are accepted:

	name

	an internal name used to identify the menu item; defaults to the slugified form of the label.

	classnames

	additional classnames applied to the link, used to give it an icon

	attrs

	additional HTML attributes to apply to the link

	order

	an integer which determines the item’s position in the menu

MenuItem can be subclassed to customise the HTML output, specify JavaScript files required by the menu item, or conditionally show or hide the item for specific requests (for example, to apply permission checks); see the source code (wagtail/admin/menu.py) for details.

from django.urls import reverse

from wagtail.core import hooks
from wagtail.admin.menu import MenuItem

@hooks.register('register_admin_menu_item')
def register_frank_menu_item():
 return MenuItem('Frank', reverse('frank'), classnames='icon icon-folder-inverse', order=10000)

register_admin_urls

Register additional admin page URLs. The callable fed into this hook should return a list of Django URL patterns which define the structure of the pages and endpoints of your extension to the Wagtail admin. For more about vanilla Django URLconfs and views, see url dispatcher [https://docs.djangoproject.com/en/stable/topics/http/urls/].

from django.http import HttpResponse
from django.conf.urls import url

from wagtail.core import hooks

def admin_view(request):
 return HttpResponse(
 "I have approximate knowledge of many things!",
 content_type="text/plain")

@hooks.register('register_admin_urls')
def urlconf_time():
 return [
 url(r'^how_did_you_almost_know_my_name/$', admin_view, name='frank'),
]

register_group_permission_panel

Add a new panel to the Groups form in the ‘settings’ area. The callable passed to this hook must return a ModelForm / ModelFormSet-like class, with a constructor that accepts a group object as its instance keyword argument, and which implements the methods save, is_valid, and as_admin_panel (which returns the HTML to be included on the group edit page).

register_settings_menu_item

As register_admin_menu_item, but registers menu items into the ‘Settings’ sub-menu rather than the top-level menu.

construct_settings_menu

As construct_main_menu, but modifies the ‘Settings’ sub-menu rather than the top-level menu.

register_reports_menu_item

As register_admin_menu_item, but registers menu items into the ‘Reports’ sub-menu rather than the top-level menu.

construct_reports_menu

As construct_main_menu, but modifies the ‘Reports’ sub-menu rather than the top-level menu.

register_admin_search_area

Add an item to the Wagtail admin search “Other Searches”. Behaviour of this hook is similar to register_admin_menu_item. The callable passed to this hook must return an instance of wagtail.admin.search.SearchArea. New items can be constructed from the SearchArea class by passing the following parameters:

	label

	text displayed in the “Other Searches” option box.

	name

	an internal name used to identify the search option; defaults to the slugified form of the label.

	url

	the URL of the target search page.

	classnames

	additional CSS classnames applied to the link, used to give it an icon.

	attrs

	additional HTML attributes to apply to the link.

	order

	an integer which determines the item’s position in the list of options.

Setting the URL can be achieved using reverse() on the target search page. The GET parameter ‘q’ will be appended to the given URL.

A template tag, search_other is provided by the wagtailadmin_tags template module. This tag takes a single, optional parameter, current, which allows you to specify the name of the search option currently active. If the parameter is not given, the hook defaults to a reverse lookup of the page’s URL for comparison against the url parameter.

SearchArea can be subclassed to customise the HTML output, specify JavaScript files required by the option, or conditionally show or hide the item for specific requests (for example, to apply permission checks); see the source code (wagtail/admin/search.py) for details.

from django.urls import reverse
from wagtail.core import hooks
from wagtail.admin.search import SearchArea

@hooks.register('register_admin_search_area')
def register_frank_search_area():
 return SearchArea('Frank', reverse('frank'), classnames='icon icon-folder-inverse', order=10000)

register_permissions

Return a QuerySet of Permission objects to be shown in the Groups administration area.

filter_form_submissions_for_user

Allows access to form submissions to be customised on a per-user, per-form basis.

	This hook takes two parameters:

	
	The user attempting to access form submissions

	A QuerySet of form pages

The hook must return a QuerySet containing a subset of these form pages which the user is allowed to access the submissions for.

For example, to prevent non-superusers from accessing form submissions:

from wagtail.core import hooks

@hooks.register('filter_form_submissions_for_user')
def construct_forms_for_user(user, queryset):
 if not user.is_superuser:
 queryset = queryset.none()

 return queryset

Editor interface

Hooks for customising the editing interface for pages and snippets.

register_rich_text_features

Rich text fields in Wagtail work with a list of ‘feature’ identifiers that determine which editing controls are available in the editor, and which elements are allowed in the output; for example, a rich text field defined as RichTextField(features=['h2', 'h3', 'bold', 'italic', 'link']) would allow headings, bold / italic formatting and links, but not (for example) bullet lists or images. The register_rich_text_features hook allows new feature identifiers to be defined - see Limiting features in a rich text field for details.

insert_editor_css

Add additional CSS files or snippets to the page editor.

from django.templatetags.static import static
from django.utils.html import format_html

from wagtail.core import hooks

@hooks.register('insert_editor_css')
def editor_css():
 return format_html(
 '<link rel="stylesheet" href="{}">',
 static('demo/css/vendor/font-awesome/css/font-awesome.min.css')
)

insert_global_admin_css

Add additional CSS files or snippets to all admin pages.

from django.utils.html import format_html
from django.templatetags.static import static

from wagtail.core import hooks

@hooks.register('insert_global_admin_css')
def global_admin_css():
 return format_html('<link rel="stylesheet" href="{}">', static('my/wagtail/theme.css'))

insert_editor_js

Add additional JavaScript files or code snippets to the page editor.

from django.utils.html import format_html, format_html_join
from django.templatetags.static import static

from wagtail.core import hooks

@hooks.register('insert_editor_js')
def editor_js():
 js_files = [
 'demo/js/jquery.raptorize.1.0.js',
]
 js_includes = format_html_join('\n', '<script src="{0}"></script>',
 ((static(filename),) for filename in js_files)
)
 return js_includes + format_html(
 """
 <script>
 $(function() {
 $('button').raptorize();
 });
 </script>
 """
)

insert_global_admin_js

Add additional JavaScript files or code snippets to all admin pages.

from django.utils.html import format_html

from wagtail.core import hooks

@hooks.register('insert_global_admin_js')
def global_admin_js():
 return format_html(
 '<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r74/three.js"></script>',
)

Editor workflow

Hooks for customising the way users are directed through the process of creating page content.

after_create_page

Do something with a Page object after it has been saved to the database (as a published page or a revision). The callable passed to this hook should take a request object and a page object. The function does not have to return anything, but if an object with a status_code property is returned, Wagtail will use it as a response object. By default, Wagtail will instead redirect to the Explorer page for the new page’s parent.

from django.http import HttpResponse

from wagtail.core import hooks

@hooks.register('after_create_page')
def do_after_page_create(request, page):
 return HttpResponse("Congrats on making content!", content_type="text/plain")

before_create_page

Called at the beginning of the “create page” view passing in the request, the parent page and page model class.

The function does not have to return anything, but if an object with a status_code property is returned, Wagtail will use it as a response object and skip the rest of the view.

Unlike, after_create_page, this is run both for both GET and POST requests.

This can be used to completely override the editor on a per-view basis:

from wagtail.core import hooks

from .models import AwesomePage
from .admin_views import edit_awesome_page

@hooks.register('before_create_page')
def before_create_page(request, parent_page, page_class):
 # Use a custom create view for the AwesomePage model
 if page_class == AwesomePage:
 return create_awesome_page(request, parent_page)

after_delete_page

Do something after a Page object is deleted. Uses the same behaviour as after_create_page.

before_delete_page

Called at the beginning of the “delete page” view passing in the request and the page object.

Uses the same behaviour as before_create_page.

after_edit_page

Do something with a Page object after it has been updated. Uses the same behaviour as after_create_page.

before_edit_page

Called at the beginning of the “edit page” view passing in the request and the page object.

Uses the same behaviour as before_create_page.

after_copy_page

Do something with a Page object after it has been copied passing in the request, page object and the new copied page. Uses the same behaviour as after_create_page.

before_copy_page

Called at the beginning of the “copy page” view passing in the request and the page object.

Uses the same behaviour as before_create_page.

after_move_page

Do something with a Page object after it has been moved passing in the request and page object. Uses the same behaviour as after_create_page.

before_move_page

Called at the beginning of the “move page” view passing in the request, the page object and the destination page object.

Uses the same behaviour as before_create_page.

register_page_action_menu_item

Add an item to the popup menu of actions on the page creation and edit views. The callable passed to this hook must return an instance of wagtail.admin.action_menu.ActionMenuItem. The following attributes and methods are available to be overridden on subclasses of ActionMenuItem:

	order

	an integer (default 100) which determines the item’s position in the menu. Can also be passed as a keyword argument to the object constructor. The lowest-numbered item in this sequence will be selected as the default menu item; as standard, this is “Save draft” (which has an order of 0).

	label

	the displayed text of the menu item

	get_url

	a method which returns a URL for the menu item to link to; by default, returns None which causes the menu item to behave as a form submit button instead

	name

	value of the name attribute of the submit button, if no URL is specified

	is_shown

	a method which returns a boolean indicating whether the menu item should be shown; by default, true except when editing a locked page

	template

	path to a template to render to produce the menu item HTML

	get_context

	a method that returns a context dictionary to pass to the template

	render_html

	a method that returns the menu item HTML; by default, renders template with the context returned from get_context

	Media

	an inner class defining Javascript and CSS to import when this menu item is shown - see Django form media [https://docs.djangoproject.com/en/stable/topics/forms/media/]

The get_url, is_shown, get_context and render_html methods all accept a request object and a context dictionary containing the following fields:

	view

	name of the current view: 'create', 'edit' or 'revisions_revert'

	page

	For view = 'edit' or 'revisions_revert', the page being edited

	parent_page

	For view = 'create', the parent page of the page being created

	user_page_permissions

	a UserPagePermissionsProxy object for the current user, to test permissions against

from wagtail.core import hooks
from wagtail.admin.action_menu import ActionMenuItem

class GuacamoleMenuItem(ActionMenuItem):
 name = 'action-guacamole'
 label = "Guacamole"

 def get_url(self, request, context):
 return "https://www.youtube.com/watch?v=dNJdJIwCF_Y"

@hooks.register('register_page_action_menu_item')
def register_guacamole_menu_item():
 return GuacamoleMenuItem(order=10)

construct_page_action_menu

Modify the final list of action menu items on the page creation and edit views. The callable passed to this hook receives a list of ActionMenuItem objects, a request object and a context dictionary as per register_page_action_menu_item, and should modify the list of menu items in-place.

@hooks.register('construct_page_action_menu')
def remove_submit_to_moderator_option(menu_items, request, context):
 menu_items[:] = [item for item in menu_items if item.name != 'action-submit']

The construct_page_action_menu hook is called after the menu items have been sorted by their order attributes, and so setting a menu item’s order will have no effect at this point. Instead, items can be reordered by changing their position in the list, with the first item being selected as the default action. For example, to change the default action to Publish:

@hooks.register('construct_page_action_menu')
def make_publish_default_action(menu_items, request, context):
 for (index, item) in enumerate(menu_items):
 if item.name == 'action-publish':
 # move to top of list
 menu_items.pop(index)
 menu_items.insert(0, item)
 break

construct_page_listing_buttons

Modify the final list of page listing buttons in the page explorer. The
callable passed to this hook receives a list of Button objects, a request
object and a context dictionary as per register_page_action_menu_item,
and should modify the list of menu items in-place.

@hooks.register('construct_page_listing_buttons')
def remove_page_listing_button_item(buttons, page, page_perms, is_parent=False, context=None):
 if is_parent:
 buttons.pop() # removes the last 'more' dropdown button on the parent page listing buttons

construct_wagtail_userbar

Add or remove items from the wagtail userbar. Add, edit, and moderation tools are provided by default. The callable passed into the hook must take the request object and a list of menu objects, items. The menu item objects must have a render method which can take a request object and return the HTML string representing the menu item. See the userbar templates and menu item classes for more information.

from wagtail.core import hooks

class UserbarPuppyLinkItem:
 def render(self, request):
 return '<a href="http://cuteoverload.com/tag/puppehs/" ' \
 + 'target="_parent" class="action icon icon-wagtail">Puppies!'

@hooks.register('construct_wagtail_userbar')
def add_puppy_link_item(request, items):
 return items.append(UserbarPuppyLinkItem())

Admin workflow

Hooks for customising the way admins are directed through the process of editing users.

after_create_user

Do something with a User object after it has been saved to the database. The callable passed to this hook should take a request object and a user object. The function does not have to return anything, but if an object with a status_code property is returned, Wagtail will use it as a response object. By default, Wagtail will instead redirect to the User index page.

from django.http import HttpResponse

from wagtail.core import hooks

@hooks.register('after_create_user')
def do_after_page_create(request, user):
 return HttpResponse("Congrats on creating a new user!", content_type="text/plain")

before_create_user

Called at the beginning of the “create user” view passing in the request.

The function does not have to return anything, but if an object with a status_code property is returned, Wagtail will use it as a response object and skip the rest of the view.

Unlike, after_create_user, this is run both for both GET and POST requests.

This can be used to completely override the user editor on a per-view basis:

from django.http import HttpResponse

from wagtail.core import hooks

from .models import AwesomePage
from .admin_views import edit_awesome_page

@hooks.register('before_create_user')
def before_create_page(request):
 return HttpResponse("A user creation form", content_type="text/plain")

after_delete_user

Do something after a User object is deleted. Uses the same behaviour as after_create_user.

before_delete_user

Called at the beginning of the “delete user” view passing in the request and the user object.

Uses the same behaviour as before_create_user.

after_edit_user

Do something with a User object after it has been updated. Uses the same behaviour as after_create_user.

before_edit_user

Called at the beginning of the “edit user” view passing in the request and the user object.

Uses the same behaviour as before_create_user.

Choosers

construct_page_chooser_queryset

Called when rendering the page chooser view, to allow the page listing QuerySet to be customised. The callable passed into the hook will receive the current page QuerySet and the request object, and must return a Page QuerySet (either the original one, or a new one).

from wagtail.core import hooks

@hooks.register('construct_page_chooser_queryset')
def show_my_pages_only(pages, request):
 # Only show own pages
 pages = pages.filter(owner=request.user)

 return pages

construct_document_chooser_queryset

Called when rendering the document chooser view, to allow the document listing QuerySet to be customised. The callable passed into the hook will receive the current document QuerySet and the request object, and must return a Document QuerySet (either the original one, or a new one).

from wagtail.core import hooks

@hooks.register('construct_document_chooser_queryset')
def show_my_uploaded_documents_only(documents, request):
 # Only show uploaded documents
 documents = documents.filter(uploaded_by_user=request.user)

 return documents

construct_image_chooser_queryset

Called when rendering the image chooser view, to allow the image listing QuerySet to be customised. The callable passed into the hook will receive the current image QuerySet and the request object, and must return an Image QuerySet (either the original one, or a new one).

from wagtail.core import hooks

@hooks.register('construct_image_chooser_queryset')
def show_my_uploaded_images_only(images, request):
 # Only show uploaded images
 images = images.filter(uploaded_by_user=request.user)

 return images

Page explorer

construct_explorer_page_queryset

Called when rendering the page explorer view, to allow the page listing QuerySet to be customised. The callable passed into the hook will receive the parent page object, the current page QuerySet, and the request object, and must return a Page QuerySet (either the original one, or a new one).

from wagtail.core import hooks

@hooks.register('construct_explorer_page_queryset')
def show_my_profile_only(parent_page, pages, request):
 # If we're in the 'user-profiles' section, only show the user's own profile
 if parent_page.slug == 'user-profiles':
 pages = pages.filter(owner=request.user)

 return pages

register_page_listing_buttons

Add buttons to the actions list for a page in the page explorer. This is useful when adding custom actions to the listing, such as translations or a complex workflow.

This example will add a simple button to the listing:

from wagtail.admin import widgets as wagtailadmin_widgets

@hooks.register('register_page_listing_buttons')
def page_listing_buttons(page, page_perms, is_parent=False):
 yield wagtailadmin_widgets.PageListingButton(
 'A page listing button',
 '/goes/to/a/url/',
 priority=10
)

The priority argument controls the order the buttons are displayed in. Buttons are ordered from low to high priority, so a button with priority=10 will be displayed before a button with priority=20.

register_page_listing_more_buttons

Add buttons to the “More” dropdown menu for a page in the page explorer. This works similarly to the register_page_listing_buttons hook but is useful for lesser-used custom actions that are better suited for the dropdown.

This example will add a simple button to the dropdown menu:

from wagtail.admin import widgets as wagtailadmin_widgets

@hooks.register('register_page_listing_more_buttons')
def page_listing_more_buttons(page, page_perms, is_parent=False):
 yield wagtailadmin_widgets.Button(
 'A dropdown button',
 '/goes/to/a/url/',
 priority=60
)

The priority argument controls the order the buttons are displayed in the dropdown. Buttons are ordered from low to high priority, so a button with priority=10 will be displayed before a button with priority=60.

Buttons with dropdown lists

The admin widgets also provide ButtonWithDropdownFromHook, which allows you to define a custom hook for generating a dropdown menu that gets attached to your button.

Creating a button with a dropdown menu involves two steps. Firstly, you add your button to the register_page_listing_buttons hook, just like the example above.
Secondly, you register a new hook that yields the contents of the dropdown menu.

This example shows how Wagtail’s default admin dropdown is implemented. You can also see how to register buttons conditionally, in this case by evaluating the page_perms:

from wagtail.admin import widgets as wagtailadmin_widgets

@hooks.register('register_page_listing_buttons')
def page_custom_listing_buttons(page, page_perms, is_parent=False):
 yield wagtailadmin_widgets.ButtonWithDropdownFromHook(
 'More actions',
 hook_name='my_button_dropdown_hook',
 page=page,
 page_perms=page_perms,
 is_parent=is_parent,
 priority=50
)

@hooks.register('my_button_dropdown_hook')
def page_custom_listing_more_buttons(page, page_perms, is_parent=False):
 if page_perms.can_move():
 yield wagtailadmin_widgets.Button('Move', reverse('wagtailadmin_pages:move', args=[page.id]), priority=10)
 if page_perms.can_delete():
 yield wagtailadmin_widgets.Button('Delete', reverse('wagtailadmin_pages:delete', args=[page.id]), priority=30)
 if page_perms.can_unpublish():
 yield wagtailadmin_widgets.Button('Unpublish', reverse('wagtailadmin_pages:unpublish', args=[page.id]), priority=40)

The template for the dropdown button can be customised by overriding wagtailadmin/pages/listing/_button_with_dropdown.html. The JavaScript that runs the dropdowns makes use of custom data attributes, so you should leave data-dropdown and data-dropdown-toggle in the markup if you customise it.

Page serving

before_serve_page

Called when Wagtail is about to serve a page. The callable passed into the hook will receive the page object, the request object, and the args and kwargs that will be passed to the page’s serve() method. If the callable returns an HttpResponse, that response will be returned immediately to the user, and Wagtail will not proceed to call serve() on the page.

from django.http import HttpResponse

from wagtail.core import hooks

@hooks.register('before_serve_page')
def block_googlebot(page, request, serve_args, serve_kwargs):
 if request.META.get('HTTP_USER_AGENT') == 'GoogleBot':
 return HttpResponse("<h1>bad googlebot no cookie</h1>")

Document serving

before_serve_document

Called when Wagtail is about to serve a document. The callable passed into the hook will receive the document object and the request object. If the callable returns an HttpResponse, that response will be returned immediately to the user, instead of serving the document. Note that this hook will be skipped if the WAGTAILDOCS_SERVE_METHOD setting is set to direct.

 Signals

Signals

Wagtail’s PageRevision and Page implement
Signals [https://docs.djangoproject.com/en/stable/topics/signals/] from django.dispatch.
Signals are useful for creating side-effects from page publish/unpublish events.

For example, you could use signals to send publish notifications to a messaging service, or POST messages to another app that’s consuming the API, such as a static site generator.

page_published

This signal is emitted from a PageRevision when a revision is set to published.

	sender

	The page class

	instance

	The specific Page instance.

	revision

	The PageRevision that was published

	kwargs

	Any other arguments passed to page_published.send().

To listen to a signal, implement page_published.connect(receiver, sender, **kwargs). Here’s a simple
example showing how you might notify your team when something is published:

from wagtail.core.signals import page_published
import urllib
import urllib2

Let everyone know when a new page is published
def send_to_slack(sender, **kwargs):
 instance = kwargs['instance']
 url = 'https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX'
 values = {
 "text" : "%s was published by %s " % (instance.title, instance.owner.username),
 "channel": "#publish-notifications",
 "username": "the squid of content",
 "icon_emoji": ":octopus:"
 }

 data = urllib.urlencode(values)
 req = urllib2.Request(url, data)
 response = urllib2.urlopen(req)

Register a receiver
page_published.connect(send_to_slack)

Receiving specific model events

Sometimes you’re not interested in receiving signals for every model, or you want
to handle signals for specific models in different ways. For instance, you may
wish to do something when a new blog post is published:

from wagtail.core.signals import page_published
from mysite.models import BlogPostPage

Do something clever for each model type
def receiver(sender, **kwargs):
 # Do something with blog posts
 pass

Register listeners for each page model class
page_published.connect(receiver, sender=BlogPostPage)

Wagtail provides access to a list of registered page types through the get_page_models() function in wagtail.core.models.

Read the Django documentation [https://docs.djangoproject.com/en/stable/topics/signals/#connecting-to-specific-signals] for more information about specifying senders.

page_unpublished

This signal is emitted from a Page when the page is unpublished.

	sender

	The page class

	instance

	The specific Page instance.

	kwargs

	Any other arguments passed to page_unpublished.send()

 Settings

Settings

Wagtail makes use of the following settings, in addition to Django’s core settings [https://docs.djangoproject.com/en/stable/ref/settings/]:

Site Name

WAGTAIL_SITE_NAME = 'Stark Industries Skunkworks'

This is the human-readable name of your Wagtail install which welcomes users upon login to the Wagtail admin.

Append Slash

Don't add a trailing slash to Wagtail-served URLs
WAGTAIL_APPEND_SLASH = False

Similar to Django’s APPEND_SLASH, this setting controls how Wagtail will handle requests that don’t end in a trailing slash.

When WAGTAIL_APPEND_SLASH is True (default), requests to Wagtail pages which omit a trailing slash will be redirected by Django’s CommonMiddleware [https://docs.djangoproject.com/en/stable/ref/middleware/#django.middleware.common.CommonMiddleware] to a URL with a trailing slash.

When WAGTAIL_APPEND_SLASH is False, requests to Wagtail pages will be served both with and without trailing slashes. Page links generated by Wagtail, however, will not include trailing slashes.

Note

If you use the False setting, keep in mind that serving your pages both with and without slashes may affect search engines’ ability to index your site. See this Google Webmaster Blog post [https://webmasters.googleblog.com/2010/04/to-slash-or-not-to-slash.html] for more details.

Search

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': 'wagtail.search.backends.elasticsearch2',
 'INDEX': 'myapp'
 }
}

Define a search backend. For a full explanation, see Backends.

WAGTAILSEARCH_RESULTS_TEMPLATE = 'myapp/search_results.html'
WAGTAILSEARCH_RESULTS_TEMPLATE_AJAX = 'myapp/includes/search_listing.html'

Override the templates used by the search front-end views.

WAGTAILSEARCH_HITS_MAX_AGE = 14

Set the number of days (default 7) that search query logs are kept for; these are used to identify popular search terms for promoted search results. Queries older than this will be removed by the search_garbage_collect command.

Embeds

Wagtail supports generating embed code from URLs to content on an external
providers such as Youtube or Twitter. By default, Wagtail will fetch the embed
code directly from the relevant provider’s site using the oEmbed protocol.
Wagtail has a builtin list of the most common providers.

The embeds fetching can be fully configured using the WAGTAILEMBEDS_FINDERS
setting. This is fully documented in Configuring embed “finders”.

WAGTAILEMBEDS_RESPONSIVE_HTML = True

Adds class="responsive-object" and an inline padding-bottom style to embeds,
to assist in making them responsive. See Responsive Embeds for details.

New in version 2.8: The WAGTAILEMBEDS_RESPONSIVE_HTML setting was added.

Dashboard

WAGTAILADMIN_RECENT_EDITS_LIMIT = 5

This setting lets you change the number of items shown at ‘Your most recent edits’ on the dashboard.

WAGTAILADMIN_USER_LOGIN_FORM = 'users.forms.LoginForm'

Allows the default LoginForm to be extended with extra fields.

WAGTAIL_GRAVATAR_PROVIDER_URL = '//www.gravatar.com/avatar'

If a user has not uploaded a profile picture, Wagtail will look for an avatar linked to their email address on gravatar.com. This setting allows you to specify an alternative provider such as like robohash.org, or can be set to None to disable the use of remote avatars completely.

WAGTAIL_MODERATION_ENABLED = True

Changes whether the Submit for Moderation button is displayed in the action menu.

Images

WAGTAILIMAGES_IMAGE_MODEL = 'myapp.MyImage'

This setting lets you provide your own image model for use in Wagtail, which might extend the built-in AbstractImage class or replace it entirely.

WAGTAILIMAGES_MAX_UPLOAD_SIZE = 20 * 1024 * 1024 # i.e. 20MB

This setting lets you override the maximum upload size for images (in bytes). If omitted, Wagtail will fall back to using its 10MB default value.

WAGTAILIMAGES_MAX_IMAGE_PIXELS = 128000000 # i.e. 128 megapixels

This setting lets you override the maximum number of pixels an image can have. If omitted, Wagtail will fall back to using its 128 megapixels default value. The pixel count takes animation frames into account - for example, a 25-frame animation of size 100x100 is considered to have 100 * 100 * 25 = 250000 pixels.

WAGTAILIMAGES_FEATURE_DETECTION_ENABLED = True

This setting enables feature detection once OpenCV is installed, see all details on the Feature Detection documentation.

WAGTAILIMAGES_INDEX_PAGE_SIZE = 20

Specifies the number of images per page shown on the main Images listing in the Wagtail admin.

WAGTAILIMAGES_USAGE_PAGE_SIZE = 20

Specifies the number of items per page shown when viewing an image’s usage (see WAGTAIL_USAGE_COUNT_ENABLED).

WAGTAILIMAGES_CHOOSER_PAGE_SIZE = 12

Specifies the number of images shown per page in the image chooser modal.

Documents

WAGTAILDOCS_SERVE_METHOD = 'redirect'

Determines how document downloads will be linked to and served. Normally, requests for documents are sent through a Django view, to perform permission checks (see Image / document permissions) and potentially other housekeeping tasks such as hit counting. To fully protect against users bypassing this check, it needs to happen in the same request where the document is served; however, this incurs a performance hit as the document then needs to be served by the Django server. In particular, this cancels out much of the benefit of hosting documents on external storage, such as S3 or a CDN.

For this reason, Wagtail provides a number of serving methods which trade some of the strictness of the permission check for performance:

	'direct' - links to documents point directly to the URL provided by the underlying storage, bypassing the Django view that provides the permission check. This is most useful when deploying sites as fully static HTML (e.g. using wagtail-bakery [https://github.com/wagtail/wagtail-bakery] or Gatsby [https://www.gatsbyjs.org/]).

	'redirect' - links to documents point to a Django view which will check the user’s permission; if successful, it will redirect to the URL provided by the underlying storage to allow the document to be downloaded. This is most suitable for remote storage backends such as S3, as it allows the document to be served independently of the Django server. Note that if a user is able to guess the latter URL, they will be able to bypass the permission check; some storage backends may provide configuration options to generate a random or short-lived URL to mitigate this.

	'serve_view' - links to documents point to a Django view which both checks the user’s permission, and serves the document. Serving will be handled by django-sendfile [https://github.com/johnsensible/django-sendfile], if this is installed and supported by your server configuration, or as a streaming response from Django if not. When using this method, it is recommended that you configure your webserver to disallow serving documents directly from their location under MEDIA_ROOT, as this would provide a way to bypass the permission check.

If WAGTAILDOCS_SERVE_METHOD is unspecified or set to None, the default method is 'redirect' when a remote storage backend is in use (i.e. one that exposes a URL but not a local filesystem path), and 'serve_view' otherwise. Finally, some storage backends may not expose a URL at all; in this case, serving will proceed as for 'serve_view'.

Password Management

WAGTAIL_PASSWORD_MANAGEMENT_ENABLED = True

This specifies whether users are allowed to change their passwords (enabled by default).

WAGTAIL_PASSWORD_RESET_ENABLED = True

This specifies whether users are allowed to reset their passwords. Defaults to the same as WAGTAIL_PASSWORD_MANAGEMENT_ENABLED.

WAGTAILUSERS_PASSWORD_ENABLED = True

This specifies whether password fields are shown when creating or editing users through Settings -> Users (enabled by default). Set this to False (along with WAGTAIL_PASSWORD_MANAGEMENT_ENABLED and WAGTAIL_PASSWORD_RESET_ENABLED) if your users are authenticated through an external system such as LDAP.

WAGTAILUSERS_PASSWORD_REQUIRED = True

This specifies whether password is a required field when creating a new user. True by default; ignored if WAGTAILUSERS_PASSWORD_ENABLED is false. If this is set to False, and the password field is left blank when creating a user, then that user will have no usable password; in order to log in, they will have to reset their password (if WAGTAIL_PASSWORD_RESET_ENABLED is True) or use an alternative authentication system such as LDAP (if one is set up).

WAGTAIL_EMAIL_MANAGEMENT_ENABLED = True

This specifies whether users are allowed to change their email (enabled by default).

Email Notifications

WAGTAILADMIN_NOTIFICATION_FROM_EMAIL = 'wagtail@myhost.io'

Wagtail sends email notifications when content is submitted for moderation, and when the content is accepted or rejected. This setting lets you pick which email address these automatic notifications will come from. If omitted, Django will fall back to using the DEFAULT_FROM_EMAIL variable if set, and webmaster@localhost if not.

WAGTAILADMIN_NOTIFICATION_USE_HTML = True

Notification emails are sent in text/plain by default, change this to use HTML formatting.

WAGTAILADMIN_NOTIFICATION_INCLUDE_SUPERUSERS = False

Notification emails are sent to moderators and superusers by default. You can change this to exclude superusers and only notify moderators.

Wagtail update notifications

WAGTAIL_ENABLE_UPDATE_CHECK = True

For admins only, Wagtail performs a check on the dashboard to see if newer releases are available. This also provides the Wagtail team with the hostname of your Wagtail site. If you’d rather not receive update notifications, or if you’d like your site to remain unknown, you can disable it with this setting.

Private pages / documents

PASSWORD_REQUIRED_TEMPLATE = 'myapp/password_required.html'

This is the path to the Django template which will be used to display the “password required” form when a user accesses a private page. For more details, see the Private pages documentation.

DOCUMENT_PASSWORD_REQUIRED_TEMPLATE = 'myapp/document_password_required.html'

As above, but for password restrictions on documents. For more details, see the Private pages documentation.

Login page

The basic login page can be customised with a custom template.

WAGTAIL_FRONTEND_LOGIN_TEMPLATE = 'myapp/login.html'

Or the login page can be a redirect to an external or internal URL.

WAGTAIL_FRONTEND_LOGIN_URL = '/accounts/login/'

For more details, see the Setting up a login page documentation.

Case-Insensitive Tags

TAGGIT_CASE_INSENSITIVE = True

Tags are case-sensitive by default (‘music’ and ‘Music’ are treated as distinct tags). In many cases the reverse behaviour is preferable.

Multi-word tags

TAG_SPACES_ALLOWED = False

Tags can only consist of a single word, no spaces allowed. The default setting is True (spaces in tags are allowed).

Tag limit

TAG_LIMIT = 5

Limit the number of tags that can be added to (django-taggit) Tag model. Default setting is None, meaning no limit on tags.

Unicode Page Slugs

WAGTAIL_ALLOW_UNICODE_SLUGS = True

By default, page slugs can contain any alphanumeric characters, including non-Latin alphabets. Set this to False to limit slugs to ASCII characters.

Auto update preview

WAGTAIL_AUTO_UPDATE_PREVIEW = False

When enabled, data from an edited page is automatically sent to the server
on each change, even without saving. That way, users don’t have to click on
“Preview” to update the content of the preview page. However, the preview page
tab is not refreshed automatically, users have to do it manually.
This behaviour is disabled by default.

Custom User Edit Forms

See Custom user models.

WAGTAIL_USER_EDIT_FORM = 'users.forms.CustomUserEditForm'

Allows the default UserEditForm class to be overridden with a custom form when
a custom user model is being used and extra fields are required in the user edit form.

WAGTAIL_USER_CREATION_FORM = 'users.forms.CustomUserCreationForm'

Allows the default UserCreationForm class to be overridden with a custom form when
a custom user model is being used and extra fields are required in the user creation form.

WAGTAIL_USER_CUSTOM_FIELDS = ['country']

A list of the extra custom fields to be appended to the default list.

Usage for images, documents and snippets

WAGTAIL_USAGE_COUNT_ENABLED = True

When enabled Wagtail shows where a particular image, document or snippet is being used on your site.
This is disabled by default because it generates a query which may run slowly on sites with large numbers of pages.

A link will appear on the edit page (in the rightmost column) showing you how many times the item is used.
Clicking this link takes you to the “Usage” page, which shows you where the snippet, document or image is used.

The link is also shown on the delete page, above the “Delete” button.

Note

The usage count only applies to direct (database) references. Using documents, images and snippets within StreamFields or rich text fields will not be taken into account.

Date and DateTime inputs

WAGTAIL_DATE_FORMAT = '%d.%m.%Y.'
WAGTAIL_DATETIME_FORMAT = '%d.%m.%Y. %H:%M'

Specifies the date and datetime format to be used in input fields in the Wagtail admin. The format is specified in Python datetime module syntax [https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior], and must be one of the recognised formats listed in the DATE_INPUT_FORMATS or DATETIME_INPUT_FORMATS setting respectively (see DATE_INPUT_FORMATS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATE_INPUT_FORMATS]).

Time zones

Logged-in users can choose their current time zone for the admin interface in the account settings. If is no time zone selected by the user, then TIME_ZONE will be used.
(Note that time zones are only applied to datetime fields, not to plain time or date fields. This is a Django design decision.)

The list of time zones is by default the common_timezones list from pytz.
It is possible to override this list via the WAGTAIL_USER_TIME_ZONES setting.
If there is zero or one time zone permitted, the account settings form will be hidden.

WAGTAIL_USER_TIME_ZONES = ['America/Chicago', 'Australia/Sydney', 'Europe/Rome']

Admin languages

Users can choose between several languages for the admin interface
in the account settings. The list of languages is by default all the available
languages in Wagtail with at least 90% coverage. To change it, set WAGTAILADMIN_PERMITTED_LANGUAGES:

WAGTAILADMIN_PERMITTED_LANGUAGES = [('en', 'English'),
 ('pt', 'Portuguese')]

Since the syntax is the same as Django LANGUAGES, you can do this so users
can only choose between front office languages:

LANGUAGES = WAGTAILADMIN_PERMITTED_LANGUAGES = [('en', 'English'),
 ('pt', 'Portuguese')]

Static files

WAGTAILADMIN_STATIC_FILE_VERSION_STRINGS = False

Static file URLs within the Wagtail admin are given a version-specific query string of the form ?v=1a2b3c4d, to prevent outdated cached copies of Javascript and CSS files from persisting after a Wagtail upgrade. To disable these, set WAGTAILADMIN_STATIC_FILE_VERSION_STRINGS to False.

API Settings

For full documenation on API configuration, including these settings, see Wagtail API v2 Configuration Guide documentation.

WAGTAILAPI_BASE_URL = 'http://api.example.com/'

Required when using frontend cache invalidation, used to generate absolute URLs to document files and invalidating the cache.

WAGTAILAPI_LIMIT_MAX = 500

Default is 20, used to change the maximum number of results a user can request at a time, set to None for no limit.

WAGTAILAPI_SEARCH_ENABLED = False

Default is true, setting this to false will disable full text search on all endpoints.

WAGTAILAPI_USE_FRONTENDCACHE = True

Requires wagtailfrontendcache app to be installed, inidicates the API should use the frontend cache.

Frontend cache

For full documenation on frontend cache invalidation, including these settings, see Frontend cache invalidator.

WAGTAILFRONTENDCACHE = {
 'varnish': {
 'BACKEND': 'wagtail.contrib.frontend_cache.backends.HTTPBackend',
 'LOCATION': 'http://localhost:8000',
 },
}

See documentation linked above for full options available.

Note

WAGTAILFRONTENDCACHE_LOCATION is no longer the preferred way to set the cache location, instead set the LOCATION within the WAGTAILFRONTENDCACHE item.

WAGTAILFRONTENDCACHE_LANGUAGES = [l[0] for l in settings.LANGUAGES]

Default is an empty list, must be a list of languages to also purge the urls for each language of a purging url. This setting needs settings.USE_I18N to be True to work.

Rich text

WAGTAILADMIN_RICH_TEXT_EDITORS = {
 'default': {
 'WIDGET': 'wagtail.admin.rich_text.DraftailRichTextArea',
 'OPTIONS': {
 'features': ['h2', 'bold', 'italic', 'link', 'document-link']
 }
 },
 'legacy': {
 'WIDGET': 'wagtail.admin.rich_text.HalloRichTextArea',
 }
}

Customise the behaviour of rich text fields. By default, RichTextField and RichTextBlock use the configuration given under the 'default' key, but this can be overridden on a per-field basis through the editor keyword argument, e.g. body = RichTextField(editor='legacy'). Within each configuration block, the following fields are recognised:

	WIDGET: The rich text widget implementation to use. Wagtail provides two implementations: wagtail.admin.rich_text.DraftailRichTextArea (a modern extensible editor which enforces well-structured markup) and wagtail.admin.rich_text.HalloRichTextArea (deprecated; works directly at the HTML level). Other widgets may be provided by third-party packages.

	OPTIONS: Configuration options to pass to the widget. Recognised options are widget-specific, but both DraftailRichTextArea and HalloRichTextArea accept a features list indicating the active rich text features (see Limiting features in a rich text field).

Page locking

New in version 2.8: The page locking logic has been changed so that pages are still editable
by the users who locked them.

WAGTAILADMIN_GLOBAL_PAGE_EDIT_LOCK can be set to True to prevent users
from editing pages that they have locked.

 The project template

The project template

mysite/
 home/
 migrations/
 __init__.py
 0001_initial.py
 0002_create_homepage.py
 templates/
 home/
 home_page.html
 __init__.py
 models.py
 search/
 templates/
 search/
 search.html
 __init__.py
 views.py
 mysite/
 settings/
 __init__.py
 base.py
 dev.py
 production.py
 static/
 css/
 mysite.css
 js/
 mysite.js
 templates/
 404.html
 500.html
 base.html
 __init__.py
 urls.py
 wsgi.py
 Dockerfile
 manage.py
 requirements.txt

The “home” app

Location: /mysite/home/

This app is here to help get you started quicker by providing a HomePage model with migrations to create one when you first set up your app.

Default templates and static files

Location: /mysite/mysite/templates/ and /mysite/mysite/static/

The templates directory contains base.html, 404.html and 500.html. These files are very commonly needed on Wagtail sites to they have been added into the template.

The static directory contains an empty JavaScript and CSS file.

Django settings

Location: /mysite/mysite/settings/

The Django settings files are split up into base.py, dev.py, production.py and local.py.

	base.py

	This file is for global settings that will be used in both development and production. Aim to keep most of your configuration in this file.

	dev.py

	This file is for settings that will only be used by developers. For example: DEBUG = True

	production.py

	This file is for settings that will only run on a production server. For example: DEBUG = False

	local.py

	This file is used for settings local to a particular machine. This file should never be tracked by a version control system.

Tip

On production servers, we recommend that you only store secrets in local.py (such as API keys and passwords). This can save you headaches in the future if you are ever trying to debug why a server is behaving badly. If you are using multiple servers which need different settings then we recommend that you create a different production.py file for each one.

Dockerfile

Location: /mysite/Dockerfile

Contains configuration for building and deploying the site as a Docker [https://docs.docker.com/] container. To build and use the Docker image for your project, run:

docker build -t mysite .
docker run -p 8000:8000 mysite

 Support

Support

If you have any problems or questions about working with Wagtail, you are invited to visit any of the following support channels, where volunteer members of the Wagtail community will be happy to assist.

Please respect the time and effort of volunteers, by not asking the same question in multiple places. At best, you’ll be spamming the same set of people each time; at worst, you’ll waste the effort of volunteers who spend time answering a question unaware that it has already been answered elsewhere. If you absolutely must ask a question on multiple forums, post it on Stack Overflow first and include the Stack Overflow link in your subsequent posts.

Stack Overflow

Stack Overflow [https://stackoverflow.com/questions/tagged/wagtail] is the best place to find answers to your questions about working with Wagtail - there is an active community of Wagtail users and developers responding to questions there. When posting questions, please read Stack Overflow’s advice on how to ask questions [https://stackoverflow.com/help/how-to-ask] and remember to tag your question with “wagtail”.

Mailing list

For topics and discussions that do not fit Stack Overflow’s question-and-answer format, there is a Wagtail Support mailing list at groups.google.com/d/forum/wagtail [https://groups.google.com/d/forum/wagtail].

Slack

The Wagtail Slack workspace is open to all users and developers of Wagtail. To join, head to: https://wagtail.io/slack/

Please use the #support channel for support questions. Support is provided by members of the Wagtail community on a voluntary basis, and we cannot guarantee that questions will be answered quickly (or at all). If you want to see this resource succeed, please consider sticking around to help out! Also, please keep in mind that many of Wagtail’s core and expert developers prefer to handle support queries on a non-realtime basis through Stack Overflow, and questions asked there may well get a better response.

Issues

If you think you’ve found a bug in Wagtail, or you’d like to suggest a new feature, please check the current list at github.com/wagtail/wagtail/issues [https://github.com/wagtail/wagtail/issues]. If your bug or suggestion isn’t there, raise a new issue, providing as much relevant context as possible.

Torchbox

Finally, if you have a query which isn’t relevant for any of the above forums, feel free to contact the Wagtail team at Torchbox directly, on hello@wagtail.io or @wagtailcms [https://twitter.com/wagtailcms].

 Using Wagtail: an Editor’s guide

Using Wagtail: an Editor’s guide

This section of the documentation is written for the users of a Wagtail-powered site. That is, the content editors, moderators and administrators who will be running things on a day-to-day basis.

	Introduction

	Getting started
	The Wagtail demo site

	Logging in

	Finding your way around
	The Dashboard

	The Explorer menu

	Using search

	The Explorer page
	Reordering pages

	Creating new pages
	Selecting a page type

	Creating page body content
	StreamField

	Inserting images and videos in a page
	Inserting images using the image chooser field

	Choosing an image to insert

	Inserting images using the rich text field

	Inserting links in a page

	Inserting videos into body content

	Inserting links to documents into body text

	Adding multiple items

	Required fields

	Edit Page tabs
	The Promote tab

	The Settings Tab

	Previewing and submitting pages for moderation

	Editing existing pages

	Managing documents, images, snippets and collections
	Documents

	Images
	Changing the image

	Focal area

	Snippets
	The Snippets menu

	Adding snippets whilst editing a page

	Collections
	Add a collection

	Add images / documents to a collection

	Privacy settings

	Managing Redirects
	About redirects

	Configuring redirects

	Administrator tasks
	Managing users and roles

	Promoted search results

	Browser issues
	Supported browsers

 Introduction

Introduction

Wagtail [https://wagtail.io] is a new open source content management system (CMS) developed by Torchbox [https://torchbox.com]. It is built on the Django framework and designed to be super easy to use for both developers and editors.

This documentation will explain how to:

	navigate the main user interface of Wagtail

	create pages of all different types

	modify, save, publish and unpublish pages

	how to set up users, and provide them with specific roles to create a publishing workflow

	upload, edit and include images and documents

	… and more!

 Getting started

Getting started

The Wagtail demo site

The examples in this document are based on Torchbox.com [https://torchbox.com]. However, the instructions are general enough as to be applicable to any Wagtail site.

For the purposes of this documentation we will be using the URL, www.example.com, to represent the root (homepage) of your website.

Logging in

	The first port of call for an editor is the login page for the administrator interface.

	Access this by adding /admin onto the end of your root URL (e.g. www.example.com/admin).

	Enter your username and password and click Sign in.

[image: ../_images/screen01_login.png]

 Finding your way around

Finding your way around

This section describes the different pages that you will see as you navigate around the CMS, and how you can find the content that you are looking for.

	The Dashboard

	The Explorer menu

	Using search

	The Explorer page
	Reordering pages

 The Dashboard

The Dashboard

The Dashboard provides information on:

	The number of pages, images, and documents currently held in the Wagtail CMS

	Any pages currently awaiting moderation (if you have these privileges)

	Any pages that you’ve locked (if your administrator has enabled author-specific locking)

	Your most recently edited pages

You can return to the Dashboard at any time by clicking the Wagtail logo in the top-left of the screen.

[image: ../../_images/screen02_dashboard_editor.png]

	Clicking the logo returns you to your Dashboard.

	The stats at the top of the page describe the total amount of content on the CMS (just for fun!).

	The Pages awaiting moderation table will only be displayed if you have moderator or administrator privileges

	Clicking the name of a page will take you to the ‘Edit page’ interface for this page.

	Clicking approve or reject will either change the page status to live or return the page to draft status. An email will be sent to the creator of the page giving the result of moderation either way.

	The Parent column tells you what the parent page of the page awaiting moderation is called. Clicking the parent page name will take you to its Edit page.

	The Your locked pages table shows the pages you’ve locked so that only you can edit them.

	The Locked At column displays the date you locked the page.

	Clicking the name of a page will take you to the ‘Edit page’ interface for this page.

	Clicking See all locked pages will take you to the Locked Pages Report, showing the pages locked by any user

	The Your most recent edits table displays the five pages that you most recently edited.

	The date column displays the date that you edited the page. Hover your mouse over the date for a more exact time/date.

	The status column displays the current status of the page. A page will have one of three statuses:

	Live: Published and accessible to website visitors

	Draft: Not live on the website.

	Live + Draft: A version of the page is live, but a newer version is in draft mode.

 The Explorer menu

The Explorer menu

[image: ../../_images/screen03_explorer_menu.png]

	Click the Pages button in the sidebar to open the explorer. This allows you to navigate through the sections of the site.

	Clicking the name of a page will take you to the Explorer page for that section.

	Clicking the edit icon for a page will take you to its edit screen.

	Clicking the arrow takes you to the sub-section.

	Clicking the section title takes you back to where you were.

 Using search

Using search

[image: ../../_images/screen04_search_screen.png]

	A very easy way to find the page that you want is to use the main search feature, accessible from the left-hand menu.

	Simply type in part or all of the name of the page you are looking for, and the results below will automatically update as you type.

	Clicking the page title in the results will take you to the Edit page for that result. You can differentiate between similar named pages using the Parent column, which tells you what the parent page of that page is.

 The Explorer page

The Explorer page

The Explorer page allows you to view a page’s children and perform actions on them. From here you can publish/unpublish pages, move pages to other sections, drill down further into the content tree, or reorder pages under the parent for the purposes of display in menus.

[image: ../../_images/screen05_explorer_page.png]

	The name of the section you are looking at is displayed below the breadcrumb (the row of page names beginning with the home icon). Each section is also itself a page (in this case the homepage). Clicking the title of the section takes you to the Edit screen for the section page.

	As the heading suggests, below are the child pages of the section. Clicking the titles of each child page will take you to its Edit screen.

[image: ../../_images/screen06_explorer_page_arrow.png]

	Clicking the arrows will display a further level of child pages.

[image: ../../_images/screen07_explorer_page_breadcrumb.png]

	As you drill down through the site the breadcrumb (the row of pages beginning with the home icon) will display the path you have taken. Clicking on the page titles in the breadcrumb will take you to the Explorer screen for that page.

[image: ../../_images/screen08_add_page_button.png]

	To add further child pages press the Add child page button below the parent page title. You can view the parent page on the live site by pressing the View live button. The Move button will take you to the Move page screen where you can reposition the page and all its child pages in the site structure.

	Similar buttons are available for each child page. These are made visible on hover.

Reordering pages

[image: ../../_images/screen08.5_reorder_page_handles.png]

	Clicking the “Sort” control in the header row will enable the reordering handles. This allows you to reorder the way that content displays in the main menu of your website.

	Reorder by dragging the pages by the handles on the far left (the icon made up of 6 dots).

	Your new order will be automatically saved each time you drag and drop an item.

 Creating new pages

Creating new pages

[image: ../../_images/screen08_add_page_button1.png]
Create new pages by clicking the Add child page button. This creates a child page of the section you are currently in. In this case a child page of the ‘School of Fine Art’ page.

	Selecting a page type

	Creating page body content
	StreamField
	Basic text field

	Rich text fields

	Adding further blocks in StreamField

	Reordering and deleting content in StreamField

	Inserting images and videos in a page
	Inserting images using the image chooser field

	Choosing an image to insert

	Inserting images using the rich text field

	Inserting links in a page

	Inserting videos into body content

	Inserting links to documents into body text

	Adding multiple items

	Required fields

	Edit Page tabs
	The Promote tab

	The Settings Tab

	Previewing and submitting pages for moderation

 Selecting a page type

Selecting a page type

[image: ../../_images/screen09_page_type_selection.png]

	On the left of the page chooser screen are listed all the types of pages that you can create. Clicking the page type name will take you to the Create new page screen for that page type (see below).

	Clicking the Pages using … Page links on the right will display all the pages that exist on the website of this type. This is to help you judge what type of page you will need to complete your task.

[image: ../../_images/screen10_blank_page_edit_screen.png]

	Once you’ve selected a page type you will be presented with a blank New page screen.

	Click into the areas below each field’s heading to start entering content.

 Creating page body content

Creating page body content

Wagtail supports a number of basic fields for creating content, as well as our unique StreamField feature which allows you to construct complex layouts by combining these basic fields in any order.

StreamField

StreamField allows you to create complex layouts of content on a page by combining a number of different arrangements of content, ‘blocks’, in any order.

[image: ../../_images/screen11_empty_streamfield.png]
When you first edit a page, you will be presented with the empty StreamField area, with the option to choose one of several block types. The block types on your website may be different from the screenshot here, but the principles are the same.

Click the block type, and the options will disappear, revealing the entry field for that block.

Depending on the block you chose, the field will display differently, and there might even be more than one field! There are a few common field types though that we will talk about here.

	Basic text field

	Rich text field

	Image field

Basic text field

Basic text fields have no formatting options. How these display will be determined by the style of the page in which they are being inserted. Just click into the field and type!

Rich text fields

Most of the time though, you need formatting options to create beautiful looking pages. Wagtail provides “rich text” fields, which have formatting options similar to those of word processors.

[image: ../../_images/screen11.1_streamfield_richtext.png]
Those fields present a set of tools which allow you to format and style your text. These tools also allow you to insert links, images, videos clips and links to documents. If you want to know more about a specific tool, hover your mouse on the corresponding button so the tooltip appears:

[image: ../../_images/screen11.2_toolbar_tooltips.png]
This tooltip shows a longer description of the tool, and displays its keyboard shortcut if there is one. If the keyboard shortcut does not start with CTRL or ⌘, it’s a Markdown [https://en.wikipedia.org/wiki/Markdown] shortcut to type directly in the editor:

[image: ../../_images/screen11.3_keyboard_shortcuts_.gif]

That’s the gist of it! If you want more information about the editor, please have a look at its dedicated user guide [https://www.draftail.org/docs/user-guide]. It also contains a list of all of the available keyboard shortcuts, and some tricks and gotchas.

Adding further blocks in StreamField

[image: ../../_images/screen11.8_adding_new_blocks.png]

	To add new blocks, click the ‘+’ icons above or below the existing blocks.

	You’ll then be presented once again with the different blocks from which you may choose.

	You can cancel the addition of a new block by clicking the cross at the top of the block selection interface.

Reordering and deleting content in StreamField

[image: ../../_images/screen11.9_streamfield_reordering.png]

	Click the arrows on the right-hand side of each block to move blocks up and down in the StreamField order of content.

	The blocks will be displayed in the front-end in the order that they are placed in this interface.

	Click the rubbish bin on the far right to delete a field

Warning

Once a StreamField field is deleted it cannot be retrieved if the page has not been saved. Save your pages regularly so that if you accidentally delete a field you can reload the page to undo your latest edit.

 Inserting images and videos in a page

Inserting images and videos in a page

There will obviously be many instances in which you will want to add images to a page. There are two main ways to add images to pages, either via a specific image chooser field, or via the rich text field image button. Which of these you use will be dependent on the individual setup of your site.

Inserting images using the image chooser field

Often a specific image field will be used for a main image on a page, or for an image to be used when sharing the page on social media. For the standard page on Torchbox.com, the former is used.

[image: ../../_images/screen14_add_main_image.png]

	You insert an image by clicking the Choose an image button.

Choosing an image to insert

You have two options when selecting an image to insert:

	Selecting an image from the existing image library, or…

	Uploading a new image to the CMS

When you click the Choose an image button you will be presented with a pop-up with two tabs at the top. The first, Search, allows you to search and select from the library. The second, Upload, allows you to upload a new image.

Choosing an image from the image library

The image below demonstrates finding and inserting an image that is already present in the CMS image library.

[image: ../../_images/screen16_selecting_image_from_library.png]

	Typing into the search box will automatically display the results below.

	Clicking one of the Popular tags will filter the search results by that tag.

	Clicking an image will take you to the Choose a format window (see image below).

Uploading a new image to the CMS

[image: ../../_images/screen17_upload_image.png]

	You must include an image title for your uploaded image

	Click the Choose file button to choose an image from your computer.

	Tags allows you to associate tags with the image you are uploading. This allows them to be more easily found when searching. Each tag should be separated by a space. Good practice for creating multiple word tags is to use an underscore between each word (e.g. western_yellow_wagtail).

	Click Upload to insert the uploaded image into the carousel. The image will also be added to the main CMS image library for reuse in other content.

Inserting images using the rich text field

Images can also be inserted into the body text of a page via the rich text editor. When working in a rich text field, click the Image control. You will then be presented with the same options as for inserting images into the main carousel.

In addition, Wagtail allows you to choose the format of your image.

[image: ../../_images/screen18_image_format.png]

	You can select how the image is displayed by selecting one of the format options.

	You must provide specific alt text [https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Images_in_HTML#Alternative_text] for your image.

The format options available are described below:

	Full width: Image will be inserted using the full width of the text area.

	Half-width left/right aligned: Inserts the image at half the width of the text area. If inserted in a block of text, the text will wrap around the image. If two half-width images are inserted together, they will display next to each other.

Note

The display of images formatted in this way is dependent on your implementation of Wagtail, so you may get slightly different results.

 Inserting links in a page

Inserting links in a page

Similar to images, there are a variety of points at which you will want to add links. The most common place to insert a link will be in the body text of a page. You can insert a link into the body text by clicking the Insert link button in the rich text toolbar.

Whichever way you insert a link, you will be presented with the form displayed below.

[image: ../../_images/screen19_link_form.png]

	Search for an existing page to link to using the search bar at the top of the pop-up.

	Below the search bar you can select the type of link you want to insert. The following types are available:

	Internal link: A link to an existing page within your website.

	External link: A link to a page on another website.

	Email link: A link that will open the user’s default email client with the email address prepopulated.

	Phone link: A link that will open the user’s default client for initiating audio calls, with the phone number prepopulated.

	You can also navigate through the website to find an internal link via the explorer.

 Inserting videos into body content

Inserting videos into body content

It is possible to embed media into the body text of a web page by clicking the Embed button in rich text toolbar.

[image: ../../_images/screen20_insert_video_form.png]

	Copy and paste the web address for the media into the URL field and click Insert.

[image: ../../_images/screen21_video_in_editor.png]

	A placeholder of the media will be inserted into the text area.

The embed button can be used to import media from a number of supported providers, you can see the full list of supported providers in Wagtail’s source code [https://github.com/wagtail/wagtail/blob/master/wagtail/embeds/oembed_providers.py].

 Inserting links to documents into body text

Inserting links to documents into body text

[image: ../../_images/screen27_docs_icon.png]
It is possible to insert links to documents held in the CMS into the body text of a web page by clicking the button above in the rich text field.

The process for doing this is the same as when inserting an image. You are given the choice of either choosing a document from the CMS, or uploading a new document.

[image: ../../_images/screen28_docs_form.png]

 Adding multiple items

Adding multiple items

A common feature of Wagtail is the ability to add more than one of a particular type of field or item. For example, you can add as many carousel items or related links as you wish.

[image: ../../_images/screen24_multiple_items_closed.png]

	Whenever you see the white cross in the green circle illustrated here, it means you can add multiple objects or items to a page. Clicking the icon will display the fields required for that piece of content. The image below demonstrates this with a Related link item.

[image: ../../_images/screen25_multiple_items_open.png]

	You can delete an individual item by pressing the trash can in the top-right.

	You can add more items by clicking the link with the white cross again.

[image: ../../_images/screen26_reordering_multiple_items.png]

	You can reorder your multiple items using the up and down arrows. Doing this will affect the order in which they are displayed on the live page.

 Required fields

Required fields

	Fields marked with an asterisk are required. You will not be able to save a draft or submit the page for moderation without these fields being completed.

[image: ../../_images/screen22_required_field.png]

	If you try to save/submit the page with some required fields not filled out, you will see the error displayed here.

	The number of validation errors for each of the Promote and Content tabs will appear in a red circle, and the text, ‘This field is required’, will appear below each field that must be completed.

[image: ../../_images/screen23_validation_error.png]

 Edit Page tabs

Edit Page tabs

A common feature of the Edit pages for all page types is the three tabs at the top of the screen. The first, Content, is where you build the content of the page itself.

The Promote tab

The second, Promote, is where you can set all the ‘metadata’ (data about data!) for the page. Below is a description of all default fields in the promote tab and what they do.

	Slug: The last part of the web address for the page. E.g. the slug for a blog page called ‘The best things on the web’ would be the-best-things-on-the-web (www.example.com/blog/the-best-things-on-the-web). This is automatically generated from the main page title set in the Content tab. This can be overridden by adding a new slug into the field. Slugs should be entirely lowercase, with words separated by hyphens (-).

	Page title: An optional, search-engine friendly page title. This is the title that appears in the tab of your browser window. It is also the title that would appear in a search engine if the page was returned as part of a set of search results.

	Show in menus: Ticking this box will ensure that the page is included in automatically generated menus on your site. Note: A page will only display in menus if all of its parent pages also have Show in menus ticked.

	Search description: This field allows you to add text that will be displayed if the page appears in search results. This is especially useful to distinguish between similarly named pages.

[image: ../../_images/screen26.5_promote_tab.png]

Note

You may see more fields than this in your promote tab. These are just the default fields, but you are free to add other fields to this section as necessary.

The Settings Tab

The Settings tab has two fields by default.

	Go Live date/time: Sets the time at which the changes should go live when published. See Scheduled Publishing for more details.

	Expiry date/time: Sets the time at which this page should be unpublished.

 Previewing and submitting pages for moderation

Previewing and submitting pages for moderation

The Save/Preview/Submit for moderation menu is always present at the bottom of the page edit/creation screen. The menu allows you to perform the following actions, dependent on whether you are an editor, moderator or administrator:

	Save draft: Saves your current changes but doesn’t submit the page for moderation and so won’t be published. (all roles)

	Submit for moderation: Saves your current changes and submits the page for moderation. A moderator will be notified and they will then either publish or reject the page. This button may be missing if the site administrator has disabled moderation. (all roles)

	Preview: Opens a new window displaying the page as it would look if published, but does not save your changes or submit the page for moderation. (all roles)

	Publish/Unpublish: Clicking the Publish button will publish this page. Clicking the Unpublish button will take you to a confirmation screen asking you to confirm that you wish to unpublish this page. If a page is published it will be accessible from its specific URL and will also be displayed in site search results. (moderators and administrators only)

	Delete: Clicking this button will take you to a confirmation screen asking you to confirm that you wish to delete the current page. Be sure that this is actually what you want to do, as deleted pages are not recoverable. In many situations simply unpublishing the page will be enough. (moderators and administrators only)

[image: ../../_images/screen13_publish_menu.png]

 Editing existing pages

Editing existing pages

Here is how you can access the edit screen of an existing page:

	Clicking the title of the page in an Explorer page or in search results.

	Clicking the Edit link below the title in either of the situations above.

	Clicking the Edit icon for a page in the explorer menu.

[image: ../_images/screen12_edit_screen_overview.png]

	When editing an existing page the title of the page being edited is displayed at the top of the page.

	The current status of the page is displayed in the top-right.

	You can change the title of the page by clicking into the title field.

	When you are typing into a field, help text is often displayed on the right-hand side of the screen.

 Managing documents, images, snippets and collections

Managing documents, images, snippets and collections

Wagtail allows you to manage all of your documents and images through their own dedicated interfaces. See below for information on each of these elements.

	Documents

	Images
	Changing the image

	Focal area

	Snippets
	The Snippets menu

	Adding snippets whilst editing a page

	Collections
	Add a collection

	Add images / documents to a collection

	Privacy settings

 Documents

Documents

Documents such as PDFs can be managed from the Documents interface, available in the left-hand menu. This interface allows you to add documents to and remove documents from the CMS.

[image: ../../_images/screen29_documents_page.png]

	Add documents by clicking the Add document button in the top-right.

	Search for documents in the CMS by entering your search term in the search bar. The results will be automatically updated as you type.

	You can also filter the results by Collection by selecting one from the collections dropdown above the documents list.

	Edit the details of a document by clicking the document title.

[image: ../../_images/screen30_documents_edit_page.png]

	When editing a document you can replace the file associated with that document record. This means you can update documents without having to update the pages on which they are placed. Changing the file will change it on all pages that use the document.

	Change the document’s collection using the collection dropdown.

	Add or remove tags using the Tags field.

	Save or delete documents using the buttons at the bottom of the interface.

Warning

Deleted documents cannot be recovered.

 Images

Images

If you want to edit, add or remove images from the CMS outside of the individual pages you can do so from the Images interface. This is accessed from the left-hand menu.

[image: ../../_images/screen31_images_page.png]

	Clicking an image will allow you to edit the data associated with it. This includes the Alt text, the photographers credit, the medium of the subject matter and much more.

Warning

Changing the alt text here will alter it for all occurrences of the image in carousels, but not in inline images, where the alt text can be set separately.

[image: ../../_images/screen32_image_edit_page.png]

Changing the image

	When editing an image you can replace the file associated with that image record. This means you can update images without having to update the pages on which they are placed.

Warning

Changing the file will change it on all pages that use the image.

Focal area

	This interface allows you to select a focal area which can effect how your image displays to visitors on the front-end.

	If your images are cropped in some way to make them fit to a specific shape, then the focal area will define the centre point from which the image is cropped.

	To set the focal area, drag a marquee around the most important element of the image.

	To remove the focal area, hit the button below the image.

	If the feature is set up in your website, then on the front-end you will see the crop of this image focusing on your selection.

 Snippets

Snippets

Snippets allow you to create elements on a website once and reuse them in multiple places. Then, if you want to change something on the snippet, you only need to change it once, and it will change across all the occurrences of the snippet.

How snippets are used can vary widely between websites. Here are a few examples of things Torchbox have used snippets for on our clients’ websites:

	For staff contact details, so that they can be added to many pages but managed in one place

	For Adverts, either to be applied sitewide or on individual pages

	To manage links in a global area of the site, for example in the footer

	For Calls to Action, such as Newsletter sign up blocks, that may be consistent across many different pages

The Snippets menu

[image: ../../_images/screen33_snippet_menu.png]

	You can access the Snippets menu by clicking on the ‘Snippets’ link in the left-hand menu bar.

	To add or edit a snippet, click on the snippet type you are interested in (often help text will be included to help you in selecting the right type)

	Click on an individual snippet to edit, or click ‘Add …’ in the top right to add a new snippet

	To delete snippets, select one or more snippets with the tickbox on the left and then click the delete button near the top right

Warning

Editing a snippet will change it on all of the pages on which it has been used. In the top-right of the Snippet edit screen you will see a label saying how many times the snippet has been used. Clicking this label will display a listing of all of these pages.

[image: ../../_images/screen34_snippet_used_times.png]

Adding snippets whilst editing a page

If you are editing a page, and you find yourself in need of a new snippet, do not fear! You can create a new one without leaving the page you are editing:

	Whilst editing the page, open the snippets interface in a new tab, either by Ctrl+click (cmd+click on Mac) or by right clicking it and selecting ‘Open in new tab’ from the resulting menu.

	Add the snippet in this new tab as you normally would.

	Return to your existing tab and reopen the Snippet chooser window.

	You should now see your new snippet, even though you didn’t leave the edit page.

Note

Even though this is possible, it is worth saving your page as a draft as often as possible, to avoid your changes being lost by navigating away from the edit page accidentally.

 Collections

Collections

Access to specific sets of images and documents can be controlled by setting up ‘collections’. By default all images and documents belong to the ‘root’ collection, but new collections can be created through the Settings -> Collections area of the admin interface.

[image: ../../_images/collections_list.png]

Add a collection

	Clicking the add a collection button will allow you to create a collection. Name your collection and click save .

[image: ../../_images/collections_create_collection.png]

Add images / documents to a collection

	Navigate to the Images or Documents section and select a collection from the dropdown menu.

[image: ../../_images/collections_create_collection_upload_images.png]
[image: ../../_images/collections_add_to_collection.png]

	You can also edit an image or document directly by clicking on it to assign it to a collection.

[image: ../../_images/collections_edit_img_view.png]

Privacy settings

	To set permissions determining who is able to view documents within a collection, navigate to Settings > Collections and select a collection. Then click the privacy button above the collection name.

[image: ../../_images/collections_privacy_button.png]

	Within the privacy settings overlay, select the level of privacy for the collection.

[image: ../../_images/collections_privacy_overlay.png]

Note

Permissions set on ‘root’ apply to all collections, so a user with ‘edit’ permission for images on root can edit all images; permissions set on other collections apply to that collection only.

 Managing Redirects

Managing Redirects

About redirects

When dealing with publishing and unpublishing pages you will eventually need to make redirects.
A redirect ensures that when a page is no longer available (404), the visitor and search engines are sent to a new page.
Therefore the visitor won’t end up in a breaking journey which would result in a page not found.

Wagtail considers two types of configurable redirects depending on whether Permanent is checked or not:

	Permanent redirect (checked by default)

	Temporary redirect

For both redirects the visitor won’t experience a difference when visiting a page, but the search engine will react to these two type of redirects differently.

	In the case of a temporary redirect a search engine will keep track of your old page and will index the redirected page as well.

	With a permanent redirect, the search engine will mark the old page as obsolete and considers the new page as a replacement.

Note

As a best practice Wagtail will check redirects as permanent by default, in order to prevent the undermining of your search engine ranking.

Configuring redirects

[image: ../_images/screen41_redirects_menu_item.png]
To configure redirects head over to ‘Redirects’, which can be found in the Settings menu, accessible via the left-hand menu bar.

[image: ../_images/screen42_redirects_interface.png]

	Add a redirect by clicking the Add redirect button in the top-right.

	Search for redirects already configured by entering your search term in the search bar. The results will be automatically updated as you type.

	Edit the details of a redirect by clicking the URL path in the listing.

[image: ../_images/screen43_redirects_edit_redirect.png]

	Set Redirect from to the URL pattern which is no longer available on your site.

	Set the From site if applicable (for eg: a multisite environment).

	Check whether the redirect is Permanent or temporary (unchecked).

As a last step you can either redirect to a new page within Wagtail or you can redirect the page to a different domain outside of Wagtail.

	Select your page from the explorer for Redirect to a page.

	Set a full-domain and path for Redirect to any URL.

Note

Keep in mind a redirect will only be initiated if the page is not found.
It will not be applied to existing pages (200) which will resolve on your site.

 Administrator tasks

Administrator tasks

This section of the guide documents how to perform common tasks as an administrator of a Wagtail site.

	Managing users and roles

	Promoted search results

 Managing users and roles

Managing users and roles

As an administrator, a common task will be adding, modifying or removing user profiles.

This is done via the ‘Users’ interface, which can be found in the Settings menu, accessible via the left-hand menu bar.

[image: ../../_images/screen35_users_menu_item.png]
In this interface you can see all of your users, their usernames, their ‘level’ of access (otherwise known as their ‘role’), and their status, either active or inactive.

You can sort this listing either via Name or Username.

[image: ../../_images/screen36_users_interface.png]
Clicking on a user’s name will open their profile details. From here you can then edit that users details.

Note

It is possible to change user’s passwords in this interface, but it is worth encouraging your users to use the ‘Forgotten password’ link on the login screen instead. This should save you some time!

Click the ‘Roles’ tab to edit the level of access your users have. By default there are three roles:

	Role

	Create/view drafts

	Publish content

	Access Settings

	Editor

	Yes

	No

	No

	Moderator

	Yes

	Yes

	No

	Administrator

	Yes

	Yes

	Yes

 Promoted search results

Promoted search results

Note

Promoted search results are an optional Wagtail feature. For details of how to enable them on a Wagtail installation, see search_promotions

Wagtail allows you to promote certain search results dependant on the keyword or phrase entered by the user when searching. This can be particularly useful when users commonly refer to parts of your organisation via an acronym that isn’t in official use, or if you want to direct users to a page when they enter a certain term related to the page but not included in the text of the page itself.

As a concrete example, one of our clients wanted to direct people who searched for ‘finances’ to their ‘Annual budget review’ page. The word ‘finances’ is not mentioned in either the title or the body of the target page, so they created a promoted search result for the word ‘finances’ that pushed the budget page to the very top of the results.

Note

The promoted result will only work if the user types exactly the phrase that you have set it up for. If you have variations of a phrase that you want to take into account, then you must create additional promoted results.

To set up the promoted search results, click on the ‘Promoted search results’ menu item in the ‘Settings’ menu.

[image: ../../_images/screen37_promoted_menu_item.png]
Add a new promoted result from the button in the top right of the resulting screen, or edit an existing promoted result by clicking on it.

[image: ../../_images/screen38_promoted_results_listing.png]
When adding a new promoted result, Wagtail provides you with a ‘Choose from popular search terms’ option. This will show you the most popular terms entered by users into your internal search. You can match this list against your existing promoted results to ensure that users are able to find what they are looking for.

[image: ../../_images/screen38.5_popular_search_results.png]
You then add a the result itself by clicking ‘Add recommended page’. You can add multiple results, but be careful about adding too many, as you may end up hiding all of your organic results with promoted results, which may not be helpful for users who aren’t really sure what they are looking for.

[image: ../../_images/screen39_add_promoted_result.png]

 Browser issues

Browser issues

Some issues with Wagtail may come from the browser. Try clearing the browser cache and cookies [https://www.refreshyourcache.com/], or you can also try using Wagtail with another browser [https://browsehappy.com/] to see if the problem persists.

JavaScript is required to use Wagtail – make sure it is enabled in your browser [https://www.enable-javascript.com/].

Supported browsers

For the best experience and security, we recommend that you keep your browser up to date. Go to Browse Happy [https://browsehappy.com/] for more information.

 Contributing to Wagtail

Contributing to Wagtail

Issues

The easiest way to contribute to Wagtail is to tell us how to improve it! First, check to see if your bug or feature request has already been submitted at github.com/wagtail/wagtail/issues [https://github.com/wagtail/wagtail/issues]. If it has, and you have some supporting information which may help us deal with it, comment on the existing issue. If not, please create a new one [https://github.com/wagtail/wagtail/issues/new], providing as much relevant context as possible. For example, if you’re experiencing problems with installation, detail your environment and the steps you’ve already taken. If something isn’t displaying correctly, tell us what browser you’re using, and include a screenshot if possible.

	Issue tracking
	Issues

	Pull requests

	Release schedule

Pull requests

If you’re a Python or Django developer, fork it [https://github.com/wagtail/wagtail/] and read the developing docs to get stuck in! We welcome all contributions, whether they solve problems which are specific to you or they address existing issues. If you’re stuck for ideas, pick something from the issue list [https://github.com/wagtail/wagtail/issues?state=open], or email us directly on hello@wagtail.io if you’d like us to suggest something!

For large-scale changes, we’d generally recommend breaking them down into smaller pull requests that achieve a single well-defined task and can be reviewed individually. If this isn’t possible, we recommend opening a pull request on the Wagtail RFCs [https://github.com/wagtail/rfcs/] repository, so that there’s a chance for the community to discuss the change before it gets implemented.

	Development
	Setting up the Wagtail codebase

	Testing

	Compiling static assets

	Compiling the documentation

	Committing code
	Check out the code locally

	Rebase on to master

	Update CHANGELOG.txt and release notes

	Push to master

	When you have made a mistake

Translations

Wagtail has internationalisation support so if you are fluent in a non-English language you can contribute by localising the interface.

Translation work should be submitted through Transifex [https://www.transifex.com/projects/p/wagtail/].

Other contributions

We welcome contributions to all aspects of Wagtail. If you would like to improve the design of the user interface, or extend the documentation, please submit a pull request as above. If you’re not familiar with Github or pull requests, contact us directly and we’ll work something out.

Developing packages for Wagtail

If you are developing packages for Wagtail, you can add the following PyPI [https://pypi.org/] classifiers:

	Framework :: Wagtail [https://pypi.org/search/?c=Framework+%3A%3A+Wagtail]

	Framework :: Wagtail :: 1 [https://pypi.org/search/?c=Framework+%3A%3A+Wagtail+%3A%3A+1]

	Framework :: Wagtail :: 2 [https://pypi.org/search/?c=Framework+%3A%3A+Wagtail+%3A%3A+2]

You can also find a curated list of awesome packages, articles, and other cool resources from the Wagtail community at Awesome Wagtail [https://github.com/springload/awesome-wagtail].

More information

	UI Styleguide

	General coding guidelines
	Language

	Python coding guidelines
	PEP8

	Django compatibility

	Tests

	HTML coding guidelines
	Linting HTML

	Principles

	CSS coding guidelines
	Compiling

	Linting and formatting SCSS

	Styleguide Reference

	JavaScript coding guidelines
	Linting and formatting code

	Wagtail’s release process
	Official releases

	Release cadence

	Deprecation policy

	Supported versions

	Supported versions of Django

	Release process

 Issue tracking

Issue tracking

We welcome bug reports, feature requests and pull requests through Wagtail’s Github issue tracker [https://github.com/wagtail/wagtail/issues].

Issues

An issue must always correspond to a specific action with a well-defined completion state: fixing a bug, adding a new feature, updating documentation, cleaning up code. Open-ended issues where the end result is not immediately clear (“come up with a way of doing translations”) are fine, as long as there’s a clear way to progress the issue and identify when it has been completed (not e.g. “make rich text fields suck less”).

Do not use issues for support queries or other questions (“How do I do X?” - although “Implement a way of doing X” or “Document how to do X” could well be valid issues). These should be asked on Stack Overflow [https://stackoverflow.com/questions/tagged/wagtail], or for discussions that do not fit Stack Overflow’s question-and-answer format, the Wagtail Support Google group [https://groups.google.com/forum/#!forum/wagtail].

As soon as a ticket is opened - ideally within one day - a member of the core team will give it an initial classification, by either closing it as invalid or assigning it to a milestone. Don’t be discouraged if you feel that your ticket has been given a lower priority than it deserves - this decision isn’t permanent. We will consider all feedback, and reassign or reopen tickets where appropriate.

(From the other side, this means that the core team member doing the classification should feel free to make bold unilateral decisions - there’s no need to seek consensus first. If they make the wrong judgment call, that can always be reversed later.)

The possible milestones that it might be assigned to are as follows:

	invalid (closed): this issue doesn’t identify a specific action to be taken, or the action is not one that we want to take. For example - a bug report for something that’s working as designed, or a feature request for something that’s actively harmful.

	some-day: the issue is accepted as valid (i.e. it’s a bug report for a legitimate bug, or a useful feature request) but not deemed a priority to work on (in the opinion of the core team). For example - a bug that’s only cosmetic, or a feature that would be kind of neat but not really essential. There are no resources allocated to it - feel free to take it on!

	real-soon-now: no-one on the core team has resources allocated to work on this right now, but we know it’s a pain point, and it will be prioritised whenever we next get a chance to choose something new to work on. In practice, that kind of free choice doesn’t happen very often - there are lots of pressures determining what we work on from day to day - so if this is a feature or fix you need, we encourage you to work on it and contribute a pull request, rather than waiting for the core team to get round to it!

	A specific version number (eg. 1.6): the issue is important enough that it needs to be fixed in this version. There are resources allocated and/or plans to work on the issue in the given version.

On some occasions it may take longer for the core team to classify an issue into a milestone. For example:

	It may require a non-trivial amount of work to confirm the presence of a bug. In this case, feedback and further details from other contributors, whether or not they can replicate the bug, would be particularly welcomed.

	It may require further discussion to decide whether the proposal is a good idea or not - if so, it will be tagged “design decision needed”.

We will endeavour to make sure that issues don’t remain in this state for prolonged periods. Issues and PRs tagged “design decision needed” will be revisited regularly and discussed with at least two core contributors - we aim to review each ticket at least once per release cycle (= 6 weeks) as part of weekly core team meetings.

Pull requests

As with issues, the core team will classify pull requests as soon as they are opened, usually within one day. Unless the change is invalid or particularly contentious (in which case it will be closed or marked as “design decision needed”), it will generally be classified under the next applicable version - the next minor release for new features, or the next patch release for bugfixes - and marked as ‘Needs review’.

	All contributors, core and non-core, are invited to offer feedback on the pull request.

	Core team members are invited to assign themselves to the pull request for review.

Subsequently (ideally within a week or two, but possibly longer for larger submissions) a core team member will merge it if it is ready to be merged, or tag it as requiring further work (‘needs work’ / ‘needs tests’ / ‘needs docs’). In the latter case, they may also reassign it to a later milestone (‘real-soon-now’ or ‘some-day’). Pull requests that require further work are handled and prioritised in the same way as issues - anyone is welcome to pick one up from the backlog, whether or not they were the original committer.

Rebasing / squashing of pull requests is welcome, but not essential. When doing so, do not squash commits that need reviewing into previous ones and make sure to preserve the sequence of changes. To fix mistakes in earlier commits, use git commit --fixup so that the final merge can be done with git rebase -i --autosquash.

Core team members working on Wagtail are expected to go through the same process with their own fork of the project.

Release schedule

We aim to release a new version every 2 months. To keep to this schedule, we will tend to ‘bump’ issues and PRs to a future release where necessary, rather than let them delay the present one. For this reason, an issue being tagged under a particular release milestone should not be taken as any kind of guarantee that the feature will actually be shipped in that release.

 Development

Development

Setting up a local copy of the Wagtail git repository [https://github.com/wagtail/wagtail] is slightly more involved than running a release package of Wagtail, as it requires Node.js [https://nodejs.org/] and NPM for building Javascript and CSS assets. (This is not required when running a release version, as the compiled assets are included in the release package.)

If you’re happy to develop on a virtual machine, the vagrant-wagtail-develop [https://github.com/wagtail/vagrant-wagtail-develop] setup script is the fastest way to get up and running. This will provide you with a running instance of the Wagtail Bakery demo site [https://github.com/wagtail/bakerydemo/], with the Wagtail and bakerydemo codebases available as shared folders for editing on your host machine.

(Build scripts for other platforms would be very much welcomed - if you create one, please let us know via the Wagtail Developers group [https://groups.google.com/forum/#!forum/wagtail-developers]!)

If you’d prefer to set up all the components manually, read on. These instructions assume that you’re familiar with using pip and virtualenv to manage Python packages.

Setting up the Wagtail codebase

Install Node.js, version 8. Instructions for installing Node.js can be found on the Node.js download page [https://nodejs.org/download/].
You can also use Node version manager (nvm) since Wagtail supplies a .nvmrc file in the root of the project with the minimum required Node version - see nvm’s installation instructions [https://github.com/creationix/nvm].

You will also need to install the libjpeg and zlib libraries, if you haven’t done so already - see Pillow’s platform-specific installation instructions [https://pillow.readthedocs.org/en/latest/installation.html#external-libraries].

Clone a copy of the Wagtail codebase [https://github.com/wagtail/wagtail]:

$ git clone https://github.com/wagtail/wagtail.git
$ cd wagtail

With your preferred virtualenv activated, install the Wagtail package in development mode with the included testing and documentation dependencies:

$ pip install -e '.[testing,docs]' -U

Install Node through nvm (optional):

$ nvm install

Install the tool chain for building static assets:

$ npm install --no-save

Compile the assets:

$ npm run build

Any Wagtail sites you start up in this virtualenv will now run against this development instance of Wagtail. We recommend using the Wagtail Bakery demo site [https://github.com/wagtail/bakerydemo/] as a basis for developing Wagtail. Keep in mind that the setup steps for a Wagtail site may include installing a release version of Wagtail, which will override the development version you’ve just set up. In this case, you should install the site before running the pip install -e step, or re-run that step after the site is installed.

Testing

From the root of the Wagtail codebase, run the following command to run all the tests:

$ python runtests.py

Running only some of the tests

At the time of writing, Wagtail has well over 2500 tests, which takes a while to
run. You can run tests for only one part of Wagtail by passing in the path as
an argument to runtests.py or tox:

$ # Running in the current environment
$ python runtests.py wagtail.core

$ # Running in a specified Tox environment
$ tox -e py36-dj22-sqlite-noelasticsearch wagtail.core

$ # See a list of available Tox environments
$ tox -l

You can also run tests for individual TestCases by passing in the path as
an argument to runtests.py

$ # Running in the current environment
$ python runtests.py wagtail.core.tests.test_blocks.TestIntegerBlock

$ # Running in a specified Tox environment
$ tox -e py36-dj22-sqlite-noelasticsearch wagtail.core.tests.test_blocks.TestIntegerBlock

Running migrations for the test app models

You can create migrations for the test app by running the following from the Wagtail root.

$ django-admin.py makemigrations --settings=wagtail.tests.settings

Testing against PostgreSQL

By default, Wagtail tests against SQLite. You can switch to using PostgreSQL by
using the --postgres argument:

$ python runtests.py --postgres

If you need to use a different user, password or host. Use the PGUSER, PGPASSWORD and PGHOST environment variables.

Testing against a different database

If you need to test against a different database, set the DATABASE_ENGINE
environment variable to the name of the Django database backend to test against:

$ DATABASE_ENGINE=django.db.backends.mysql python runtests.py

This will create a new database called test_wagtail in MySQL and run
the tests against it.

Testing Elasticsearch

You can test Wagtail against Elasticsearch by passing the --elasticsearch
argument to runtests.py:

$ python runtests.py --elasticsearch

Wagtail will attempt to connect to a local instance of Elasticsearch
(http://localhost:9200) and use the index test_wagtail.

If your Elasticsearch instance is located somewhere else, you can set the
ELASTICSEARCH_URL environment variable to point to its location:

$ ELASTICSEARCH_URL=http://my-elasticsearch-instance:9200 python runtests.py --elasticsearch

Browser and device support

Wagtail is meant to be used on a wide variety of devices and browsers. Supported browser / device versions include:

	Browser

	Device/OS

	Version(s)

	Mobile Safari

	iOS Phone

	Last 2

	Mobile Safari

	iOS Tablet

	Last 2

	Chrome

	Android

	Last 2

	IE

	Desktop

	11

	Chrome

	Desktop

	Last 2

	MS Edge

	Desktop

	Last 2

	Firefox

	Desktop

	Latest

	Firefox ESR

	Desktop

	Latest

	Safari

	macOS

	Last 2

We aim for Wagtail to work in those environments. Our development standards ensure that the site is usable on other browsers and will work on future browsers. To test on IE, install virtual machines made available by Microsoft [https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/].

IE 11 is gradually falling out of use, and specific features are unsupported in this browser:

	Rich text copy-paste in the rich text editor.

	Sticky toolbar in the rich text editor.

	Focus outline styles in the main menu & explorer menu.

Unsupported browsers / devices include:

	Browser

	Device/OS

	Version(s)

	Stock browser

	Android

	All

	IE

	Desktop

	10 and below

	Safari

	Windows

	All

Accessibility targets

We want to make Wagtail accessible for users of a wide variety of assistive technologies. The specific standard we aim for is WCAG2.1 [https://www.w3.org/TR/WCAG21/], AA level. Wagtail’s administration user interface isn’t accessible at the moment (see issue #4199 [https://github.com/wagtail/wagtail/issues/4199]), but here are specific assistive technologies we aim to test for, and ultimately support:

	Type

	Assistive technology

	Screen reader

	NVDA [https://www.nvaccess.org/download/] on Windows with Firefox ESR

	Screen reader

	VoiceOver [https://support.apple.com/en-gb/guide/voiceover-guide/welcome/web] on macOS with Safari

	Magnification

	Windows Magnifier [https://support.microsoft.com/en-gb/help/11542/windows-use-magnifier]

	Magnification

	macOS Zoom

	Voice control

	Windows Speech Recognition

	Voice control

	macOS Dictation

	Screen reader

	Mobile VoiceOver [https://support.apple.com/en-gb/guide/voiceover-guide/welcome/web] on iOS, or TalkBack [https://support.google.com/accessibility/android/answer/6283677?hl=en-GB] on Android

We aim for Wagtail to work in those environments. Our development standards ensure that the site is usable with other assistive technologies. In practice, testing with assistive technology can be a daunting task that requires specialised training – here are tools we rely on to help identify accessibility issues, to use during development and code reviews:

	react-axe [https://github.com/dequelabs/react-axe] integrated directly in our build tools, to identify actionable issues. Logs its results in the browser console.

	Axe [https://chrome.google.com/webstore/detail/axe/lhdoppojpmngadmnindnejefpokejbdd] Chrome extension for more comprehensive automated tests of a given page.

	Accessibility Insights for Web [https://accessibilityinsights.io/docs/en/web/overview] Chrome extension for semi-automated tests, and manual audits.

Compiling static assets

All static assets such as JavaScript, CSS, images, and fonts for the Wagtail admin are compiled from their respective sources by gulp. The compiled assets are not committed to the repository, and are compiled before packaging each new release. Compiled assets should not be submitted as part of a pull request.

To compile the assets, run:

$ npm run build

This must be done after every change to the source files. To watch the source files for changes and then automatically recompile the assets, run:

$ npm start

Compiling the documentation

The Wagtail documentation is built by Sphinx. To install Sphinx and compile the documentation, run:

$ cd /path/to/wagtail
$ # Install the documentation dependencies
$ pip install -e .[docs]
$ # Compile the docs
$ cd docs/
$ make html

The compiled documentation will now be in docs/_build/html.
Open this directory in a web browser to see it.
Python comes with a module that makes it very easy to preview static files in a web browser.
To start this simple server, run the following commands:

$ cd docs/_build/html/
$ python -mhttp.server 8080

Now you can open <http://localhost:8080/> in your web browser to see the compiled documentation.

Sphinx caches the built documentation to speed up subsequent compilations.
Unfortunately, this cache also hides any warnings thrown by unmodified documentation source files.
To clear the built HTML and start fresh, so you can see all warnings thrown when building the documentation, run:

$ cd docs/
$ make clean
$ make html

Wagtail also provides a way for documentation to be compiled automatically on each change.
To do this, you can run the following command to see the changes automatically at localhost:4000:

$ cd docs/
$ make livehtml

 Committing code

Committing code

This section is for the core team of Wagtail, or for anyone interested in the process of getting code committed to Wagtail.

Code should only be committed after it has been reviewed
by at least one other reviewer or committer,
unless the change is a small documentation change or fixing a typo.
If additional code changes are made after the review, it is OK to commit them
without further review if they are uncontroversial and small enough that
there is minimal chance of introducing new bugs.

Most code contributions will be in the form of pull requests from Github.
Pull requests should not be merged from Github, apart from small documentation fixes,
which can be merged with the ‘Squash and merge’ option. Instead, the code should
be checked out by a committer locally, the changes examined and rebased,
the CHANGELOG.txt and release notes updated,
and finally the code should be pushed to the master branch.
This process is covered in more detail below.

Check out the code locally

If the code has been submitted as a pull request,
you should fetch the changes and check them out in your Wagtail repository.
A simple way to do this is by adding the following git alias to your ~/.gitconfig (assuming upstream is wagtail/wagtail):

[alias]
 pr = !sh -c \"git fetch upstream pull/${1}/head:pr/${1} && git checkout pr/${1}\"

Now you can check out pull request number xxxx by running git pr xxxx.

Rebase on to master

Now that you have the code, you should rebase the commits on to the master branch.
Rebasing is preferred over merging,
as merge commits make the commit history harder to read for small changes.

You can fix up any small mistakes in the commits,
such as typos and formatting, as part of the rebase.
git rebase --interactive is an excellent tool for this job.

Ideally, use this as an opportunity to squash the changes to a few commits, so
each commit is making a single meaningful change (and not breaking anything).
If this is not possible because of the nature of the changes, it’s acceptable
to either squash into a commit or leave all commits unsquashed,
depending on which will be more readable in the commit history.

$ # Get the latest commits from Wagtail
$ git fetch upstream
$ git checkout master
$ git merge --ff-only upstream/master
$ # Rebase this pull request on to master
$ git checkout pr/xxxx
$ git rebase master
$ # Update master to this commit
$ git checkout master
$ git merge --ff-only pr/xxxx

Update CHANGELOG.txt and release notes

Note

This should only be done by core committers, once the changes have been reviewed and accepted.

Every significant change to Wagtail should get an entry in the CHANGELOG.txt,
and the release notes for the current version.

The CHANGELOG.txt contains a short summary of each new feature, refactoring, or bug fix in each release.
Each summary should be a single line.
Bug fixes should be grouped together at the end of the list for each release,
and be prefixed with “Fix:”.
The name of the contributor should be added at the end of the summary,
in brackets, if they are not a core committer.
For example:

* Fix: Tags added on the multiple image uploader are now saved correctly (Alex Smith)

The release notes for each version contain a more detailed description of each change.
Backwards compatibility notes should also be included.
Large new features or changes should get their own section,
while smaller changes and bug fixes should be grouped together in their own section.
See previous release notes for examples.
The release notes for each version are found in docs/releases/x.x.x.rst.

If the contributor is a new person, and this is their first contribution to Wagtail,
they should be added to the CONTRIBUTORS.rst list.
Contributors are added in chronological order,
with new contributors added to the bottom of the list.
Use their preferred name.
You can usually find the name of a contributor on their Github profile.
If in doubt, or if their name is not on their profile, ask them how they want to be named.

If the changes to be merged are small enough to be a single commit,
amend this single commit with the additions to
the CHANGELOG.txt, release notes, and contributors:

$ git add CHANGELOG.txt docs/releases/x.x.x.rst CONTRIBUTORS.rst
$ git commit --amend --no-edit

If the changes do not fit in a single commit, make a new commit with the updates to
the CHANGELOG.txt, release notes, and contributors.
The commit message should say Release notes for #xxxx:

$ git add CHANGELOG.txt docs/releases/x.x.x.rst CONTRIBUTORS.rst
$ git commit -m 'Release notes for #xxxx'

Push to master

The changes are ready to be pushed to master now.

$ # Check that everything looks OK
$ git log upstream/master..master --oneline
$ git push --dry-run upstream master
$ # Push the commits!
$ git push upstream master
$ git branch -d pr/xxxx

When you have made a mistake

It’s ok! Everyone makes mistakes. If you realise that recent merged changes
have a negative impact, create a new pull request with a revert of the changes
and merge it without waiting for a review. The PR will serve as additional
documentation for the changes, and will run through the CI tests.

 UI Styleguide

UI Styleguide

Developers working on the Wagtail UI or creating new UI components may wish to test their work against our Styleguide, which is provided as the contrib module “wagtailstyleguide”.

To install the styleguide module on your site, add it to the list of INSTALLED_APPS in your settings:

INSTALLED_APPS = (
 ...
 'wagtail.contrib.styleguide',
 ...
)

This will add a ‘Styleguide’ item to the Settings menu in the admin.

At present the styleguide is static: new UI components must be added to it manually, and there are no hooks into it for other modules to use. We hope to support hooks in the future.

The styleguide doesn’t currently provide examples of all the core interface components; notably the Page, Document, Image and Snippet chooser interfaces are not currently represented.

 General coding guidelines

General coding guidelines

Language

British English is preferred for user-facing text; this text should also be marked for translation (using the django.utils.translation.gettext function and {% trans %} template tag, for example). However, identifiers within code should use American English if the British or international spelling would conflict with built-in language keywords; for example, CSS code should consistently use the spelling color to avoid inconsistencies like background-color: $colour-red.

 Python coding guidelines

Python coding guidelines

PEP8

We ask that all Python contributions adhere to the PEP8 [https://www.python.org/dev/peps/pep-0008/] style guide, apart from the restriction on line length (E501) and some minor docstring-related issues.
The list of PEP8 violations to ignore is in the setup.cfg file, under the [flake8] header.
You might want to configure the flake8 linter in your editor/IDE to use the configuration in this file.

In addition, import lines should be sorted according to isort [https://timothycrosley.github.io/isort/] 4.2.5 rules. If you have installed Wagtail’s testing dependencies (pip install -e .[testing]), you can check your code by running make lint.

Django compatibility

Wagtail is written to be compatible with multiple versions of Django. Sometimes, this requires running one piece of code for recent version of Django, and another piece of code for older versions of Django. In these cases, always check which version of Django is being used by inspecting django.VERSION:

import django

if django.VERSION >= (1, 9):
 # Use new attribute
 related_field = field.rel
else:
 # Use old, deprecated attribute
 related_field = field.related

Always compare against the version using greater-or-equals (>=), so that code for newer versions of Django is first.

Do not use a try ... except when seeing if an object has an attribute or method introduced in a newer versions of Django, as it does not clearly express why the try ... except is used. An explicit check against the Django version makes the intention of the code very clear.

Do not do this
try:
 related_field = field.rel
except AttributeError:
 related_field = field.related

If the code needs to use something that changed in a version of Django many times, consider making a function that encapsulates the check:

import django

def related_field(field):
 if django.VERSION >= (1, 9):
 return field.rel
 else:
 return field.related

If a new function has been introduced by Django that you think would be very useful for Wagtail, but is not available in older versions of Django that Wagtail supports, that function can be copied over in to Wagtail. If the user is running a new version of Django that has the function, the function should be imported from Django. Otherwise, the version bundled with Wagtail should be used. A link to the Django source code where this function was taken from should be included:

import django

if django.VERSION >= (1, 9):
 from django.core.validators import validate_unicode_slug
else:
 # Taken from https://github.com/django/django/blob/1.9/django/core/validators.py#L230
 def validate_unicode_slug(value):
 # Code left as an exercise to the reader
 pass

Tests

Wagtail has a suite of tests, which we are committed to improving and expanding. See Testing.

We run continuous integration at travis-ci.org/wagtail/wagtail [https://travis-ci.org/wagtail/wagtail] to ensure that no commits or pull requests introduce test failures. If your contributions add functionality to Wagtail, please include the additional tests to cover it; if your contributions alter existing functionality, please update the relevant tests accordingly.

 HTML coding guidelines

HTML coding guidelines

We use Django templates [https://docs.djangoproject.com/en/stable/ref/templates/language/] to author HTML.

Linting HTML

We use jinjalint [https://github.com/motet-a/jinjalint] to lint templates. If you have installed Wagtail’s testing dependencies (pip install -e .[testing]), you can check your code by running make lint.

Principles

	Write valid HTML [https://validator.w3.org/nu/]. We target the HTML5 doctype.

	Write semantic HTML [https://html5doctor.com/element-index/].

	Attach JavaScript behavior with data- attributes, rather than classes or IDs.

	For comments, use Django templates syntax instead of HTML.

 CSS coding guidelines

CSS coding guidelines

Our CSS is written in Sass [https://sass-lang.com/], using the SCSS syntax.

Compiling

The SCSS source files are compiled to CSS using the
gulp [https://gulpjs.com/] build system.
This requires Node.js [https://nodejs.org] to run.
To install the libraries required for compiling the SCSS,
run the following from the Wagtail repository root:

$ npm install --no-save

To compile the assets, run:

$ npm run build

Alternatively, the SCSS files can be monitored,
automatically recompiling when any changes are observed, by running:

$ npm start

Linting and formatting SCSS

Wagtail uses the stylelint [https://stylelint.io/] linter.
You’ll need Node.js and npm on your development machine.
Ensure project dependencies are installed by running npm install --no-save

Linting code

Run the linter from the wagtail project root:

$ npm run lint:css

The linter is configured to check your code for adherance to the guidelines
below, plus a little more.

Formatting code

If you want to autofix errors, you can run that command directly with:

$ npm run lint:css -- --fix

Changing the linter configuration

The configuration for the linting rules is managed in an external
repository so that it can be easily shared across other Wagtail projects
or plugins. This configuration can be found at
stylelint-config-wagtail [https://github.com/wagtail/stylelint-config-wagtail].

Styleguide Reference

Spacing

	Use soft-tabs with a four space indent. Spaces are the only way to
guarantee code renders the same in any person’s environment.

	Put spaces after : in property declarations.

	Put spaces before { in rule declarations.

	Put line breaks between rulesets.

	When grouping selectors, put each selector on its own line.

	Place closing braces of declaration blocks on a new line.

	Each declaration should appear on its own line for more accurate
error reporting.

	Add a newline at the end of your .scss files.

	Strip trailing whitespace from your rules.

	Add a space after the comma, in comma-delimited property values e.g rgba()

Formatting

	Use hex color codes #000 unless using rgba() in raw CSS
(SCSS’ rgba() function is overloaded to accept hex colors as a
param, e.g., rgba(#000, .5)).

	Use // for comment blocks (instead of /* */).

	Use single quotes for string values
background: url('my/image.png')

	Avoid specifying units for zero values, e.g., margin: 0; instead
of margin: 0px;.

	Strive to limit use of shorthand declarations to instances where you
must explicitly set all the available values.

Sass imports

Leave off underscores and file extensions in includes:

// Bad
@import 'components/_widget.scss'

// Better
@import 'components/widget'

Pixels vs. ems

Use rems for font-size, because they offer
absolute control over text. Additionally, unit-less line-height is
preferred because it does not inherit a percentage value of its parent
element, but instead is based on a multiplier of the font-size.

Specificity (classes vs. ids)

Always use classes instead of IDs in CSS code. IDs are overly specific and lead
to duplication of CSS.

When styling a component, start with an element + class namespace,
prefer direct descendant selectors by default, and use as little
specificity as possible. Here is a good example:

<ul class="category-list">
 <li class="item">Category 1
 <li class="item">Category 2
 <li class="item">Category 3

.category-list { // element + class namespace

 // Direct descendant selector > for list items
 > li {
 list-style-type: disc;
 }

 // Minimal specificity for all links
 a {
 color: #f00;
 }
}

Class naming conventions

Never reference js- prefixed class names from CSS files. js- are
used exclusively from JS files.

Use the SMACSS is- prefix [https://smacss.com/book/type-state]
for state rules that are shared between CSS and JS.

Misc

As a rule of thumb, avoid unnecessary nesting in SCSS. At most, aim for
three levels. If you cannot help it, step back and rethink your overall
strategy (either the specificity needed, or the layout of the nesting).

Examples

Here are some good examples that apply the above guidelines:

// Example of good basic formatting practices
.styleguide-format {
 color: #000;
 background-color: rgba(0, 0, 0, .5);
 border: 1px solid #0f0;
}

// Example of individual selectors getting their own lines (for error reporting)
.multiple,
.classes,
.get-new-lines {
 display: block;
}

// Avoid unnecessary shorthand declarations
.not-so-good {
 margin: 0 0 20px;
}
.good {
 margin-bottom: 20px;
}

 JavaScript coding guidelines

JavaScript coding guidelines

Write JavaScript according to the Airbnb Styleguide [https://github.com/airbnb/javascript], with some exceptions:

	Use soft-tabs with a four space indent. Spaces are the only way to
guarantee code renders the same in any person’s environment.

	We accept snake_case in object properties, such as
ajaxResponse.page_title, however camelCase or UPPER_CASE should be used
everywhere else.

Linting and formatting code

Wagtail uses the ESLint [https://eslint.org/] linter to help check your code meets the
styleguide. You’ll need node.js and npm on your development machine.
Ensure project dependencies are installed by running npm install --no-save

Linting code

$ npm run lint:js

This will lint all the JS in the wagtail project, excluding vendor
files and compiled libraries.

Some of the modals are generated via server-side scripts. These include
template tags that upset the linter, so modal workflow JavaScript is
excluded from the linter.

Formatting code

$ npm run lint:js -- --fix

This will perform safe edits to conform your JS code to the styleguide.
It won’t touch the line-length, or convert quotemarks from double to single.

Run the linter after you’ve formatted the code to see what manual fixes
you need to make to the codebase.

Changing the linter configuration

The configuration for the linting rules is managed in an external
repository so that it can be easily shared across other Wagtail projects
or plugins. This configuration can be found at
eslint-config-wagtail [https://github.com/wagtail/eslint-config-wagtail].

 Wagtail’s release process

Wagtail’s release process

Official releases

Release numbering works as follows:

	Versions are numbered in the form A.B or A.B.C.

	A.B is the feature release version number. Each version will be mostly
backwards compatible with the previous release. Exceptions to this rule will
be listed in the release notes.

	C is the patch release version number, which is incremented for bugfix
and security releases. These releases will be 100% backwards-compatible with
the previous patch release. The only exception is when a security or data
loss issue can’t be fixed without breaking backwards-compatibility. If this
happens, the release notes will provide detailed upgrade instructions.

	Before a new feature release, we’ll make at least one release candidate
release. These are of the form A.BrcN, which means the
Nth release candidate of version A.B.

In git, each Wagtail release will have a tag indicating its version number.
Additionally, each release series has its
own branch, called stable/A.B.x, and bugfix/security releases will be
issued from those branches.

	Feature release

	Feature releases (A.B, A.B+1, etc.) happen every three months
– see release process for details. These releases will contain new
features and improvements to existing features.

	Patch release

	Patch releases (A.B.C, A.B.C+1, etc.) will be issued as needed, to fix
bugs and/or security issues.

These releases will be 100% compatible with the associated feature release,
unless this is impossible for security reasons or to prevent data loss.
So the answer to “should I upgrade to the latest patch release?” will always
be “yes.”

	Long-term support release

	Certain feature releases will be designated as long-term support (LTS)
releases. These releases will get security and data loss fixes applied for
a guaranteed period of time, typically six months.

Release cadence

Wagtail uses a loose form of semantic versioning [https://semver.org/].
SemVer makes it easier to see at a glance how compatible releases are with each
other. It also helps to anticipate when compatibility shims will be removed.
It’s not a pure form of SemVer as each feature release will continue to have a
few documented backwards incompatibilities where a deprecation path isn’t
possible or not worth the cost.

Deprecation policy

A feature release may deprecate certain features from previous releases. If a
feature is deprecated in feature release A.B, it will continue to work in
the following version but raise warnings. Features deprecated in release A.B
will be removed in the A.B+2 release to ensure deprecations are done
over at least 2 feature releases.

So, for example, if we decided to start the deprecation of a function in
Wagtail 1.4:

	Wagtail 1.4 will contain a backwards-compatible replica of the function which
will raise a RemovedInWagtail16Warning.

	Wagtail 1.5 will still contain the backwards-compatible replica.

	Wagtail 1.6 will remove the feature outright.

The warnings are silent by default. You can turn on display of these warnings
with the python -Wd option.

Supported versions

At any moment in time, Wagtail’s developer team will support a set of releases to
varying levels.

	The current development master will get new features and bug fixes
requiring non-trivial refactoring.

	Patches applied to the master branch must also be applied to the last feature
release branch, to be released in the next patch release of that feature
series, when they fix critical problems:

	Security issues.

	Data loss bugs.

	Crashing bugs.

	Major functionality bugs in newly-introduced features.

	Regressions from older versions of Wagtail.

The rule of thumb is that fixes will be backported to the last feature
release for bugs that would have prevented a release in the first place
(release blockers).

	Security fixes and data loss bugs will be applied to the current master, the
last feature release branch, and any other supported long-term
support release branches.

	Documentation fixes generally will be more freely backported to the last
release branch. That’s because it’s highly advantageous to have the docs for
the last release be up-to-date and correct, and the risk of introducing
regressions is much less of a concern.

As a concrete example, consider a moment in time halfway between the release of
Wagtail 1.6 and 1.7. At this point in time:

	Features will be added to master, to be released as Wagtail 1.7.

	Critical bug fixes will be applied to the stable/1.6.x branch, and
released as 1.6.1, 1.6.2, etc.

	Security fixes and bug fixes for data loss issues will be applied to
master and to the stable/1.6.x and stable/1.4.x (LTS) branches.
They will trigger the release of 1.6.1, 1.4.8, etc.

	Documentation fixes will be applied to master, and, if easily backported, to
the latest stable branch, 1.6.x.

Supported versions of Django

Each release of Wagtail declares which versions of Django it supports.

Typically, a new Wagtail feature release supports the last long-term support version and
all following versions of Django.

For example, consider a moment in time before release of Wagtail 1.5
and after the following releases:

	Django 1.8 (LTS)

	Django 1.9

	Wagtail 1.4 (LTS) - Released before Django 1.10 and supports Django 1.8 and 1.9

	Django 1.10

Wagtail 1.5 will support Django 1.8 (LTS), 1.9, 1.10.
Wagtail 1.4 will still support only Django 1.8 (LTS) and 1.9.

Release process

Wagtail uses a time-based release schedule [https://github.com/wagtail/wagtail/wiki/Release-schedule],
with feature releases every three months.

After each feature release, the release manager will announce a timeline for
the next feature release.

Release cycle

Each release cycle consists of three parts:

Phase one: feature proposal

The first phase of the release process will include figuring out what major
features to include in the next version. This should include a good deal of
preliminary work on those features – working code trumps grand design.

Phase two: development

The second part of the release schedule is the “heads-down” working period.
Using the roadmap produced at the end of phase one, we’ll all work very hard to
get everything on it done.

At the end of phase two, any unfinished features will be postponed until the
next release.

At this point, the stable/A.B.x branch will be forked from master.

Phase three: bugfixes

The last part of a release cycle is spent fixing bugs – no new features will
be accepted during this time.

Once all known blocking bugs have been addressed, a release candidate will be
made available for testing. The final release will usually follow two weeks later,
although this period may be extended if the further release blockers are found.

During this phase, committers will be more and more conservative with
backports, to avoid introducing regressions. After the release candidate, only
release blockers and documentation fixes should be backported.

Developers should avoid adding any new translatable strings after the release
candidate - this ensures that translators have the full period between the release
candidate and the final release to bring translations up to date. Translations
will be re-imported immediately before the final release.

In parallel to this phase, master can receive new features, to be released
in the A.B+1 cycle.

Bug-fix releases

After a feature release (e.g. A.B), the previous release will go into bugfix
mode.

The branch for the previous feature release (e.g. stable/A.B-1.x) will
include bugfixes. Critical bugs fixed on master must also be fixed on the
bugfix branch; this means that commits need to cleanly separate bug fixes from
feature additions. The developer who commits a fix to master will be
responsible for also applying the fix to the current bugfix branch.

 Release notes

Release notes

	Upgrading Wagtail

	Wagtail 2.8 release notes

	Wagtail 2.7.1 release notes

	Wagtail 2.7 release notes

	Wagtail 2.6.3 release notes

	Wagtail 2.6.2 release notes

	Wagtail 2.6.1 release notes

	Wagtail 2.6 release notes

	Wagtail 2.5.2 release notes

	Wagtail 2.5.1 release notes

	Wagtail 2.5 release notes

	Wagtail 2.4 release notes

	Wagtail 2.3 release notes

	Wagtail 2.2.2 release notes

	Wagtail 2.2.1 release notes

	Wagtail 2.2 release notes

	Wagtail 2.1.3 release notes

	Wagtail 2.1.2 release notes

	Wagtail 2.1.1 release notes

	Wagtail 2.1 release notes

	Wagtail 2.0.2 release notes

	Wagtail 2.0.1 release notes

	Wagtail 2.0 release notes

	Wagtail 1.13.4 release notes

	Wagtail 1.13.3 release notes

	Wagtail 1.13.2 release notes

	Wagtail 1.13.1 release notes

	Wagtail 1.13 release notes

	Wagtail 1.12.6 release notes

	Wagtail 1.12.5 release notes

	Wagtail 1.12.4 release notes

	Wagtail 1.12.3 release notes

	Wagtail 1.12.2 release notes

	Wagtail 1.12.1 release notes

	Wagtail 1.12 release notes

	Wagtail 1.11.1 release notes

	Wagtail 1.11 release notes

	Wagtail 1.10.1 release notes

	Wagtail 1.10 release notes

	Wagtail 1.9.1 release notes

	Wagtail 1.9 release notes

	Wagtail 1.8.2 release notes

	Wagtail 1.8.1 release notes

	Wagtail 1.8 release notes

	Wagtail 1.7 release notes

	Wagtail 1.6.3 release notes

	Wagtail 1.6.2 release notes

	Wagtail 1.6.1 release notes

	Wagtail 1.6 release notes

	Wagtail 1.5.3 release notes

	Wagtail 1.5.2 release notes

	Wagtail 1.5.1 release notes

	Wagtail 1.5 release notes

	Wagtail 1.4.6 release notes

	Wagtail 1.4.5 release notes

	Wagtail 1.4.4 release notes

	Wagtail 1.4.3 release notes

	Wagtail 1.4.2 release notes

	Wagtail 1.4.1 release notes

	Wagtail 1.4 release notes

	Wagtail 1.3.1 release notes

	Wagtail 1.3 release notes

	Wagtail 1.2 release notes

	Wagtail 1.1 release notes

	Wagtail 1.0 release notes

	Wagtail 0.8.10 release notes

	Wagtail 0.8.8 release notes

	Wagtail 0.8.7 release notes

	Wagtail 0.8.6 release notes

	Wagtail 0.8.5 release notes

	Wagtail 0.8.4 release notes

	Wagtail 0.8.3 release notes

	Wagtail 0.8.1 release notes

	Wagtail 0.8 release notes

	Wagtail 0.7 release notes

	Wagtail 0.6 release notes

	Wagtail 0.5 release notes

	Wagtail 0.4.1 release notes

	Wagtail 0.4 release notes

 Upgrading Wagtail

Upgrading Wagtail

Version numbers

New feature releases of Wagtail are released every three months. These releases provide new features, improvements and bugfixes, and are marked by incrementing the second part of the version number (for example, 2.6 to 2.7).

Additionally, patch releases will be issued as needed, to fix bugs and security issues. These are marked by incrementing the third part of the version number (for example, 2.6 to 2.6.1). Wherever possible, these releases will remain fully backwards compatible with the corresponding feature and not introduce any breaking changes.

A feature release will usually stop receiving patch release updates when the next feature release comes out. However, selected feature releases are designated as Long Term Support (LTS) releases, and will continue to receive maintenance updates to address any security and data-loss related issues that arise. Typically, a Long Term Support release will happen once every four feature releases and receive updates for five feature releases, giving a support period of fifteen months with a three month overlap.

Also, Long Term Support releases will ensure compatibility with at least one Django Long Term Support release [https://www.djangoproject.com/download/#supported-versions].

For dates of past and upcoming releases and support periods, see Release Schedule [https://github.com/wagtail/wagtail/wiki/Release-schedule].

Deprecation policy

Sometimes it is necessary for a feature release to deprecate features from previous releases. This will be noted in the “Upgrade considerations” section of the release notes.

When a feature is deprecated, it will continue to work in that feature release and the one after it, but will raise a warning. The feature will then be removed in the subsequent feature release. For example, a feature marked as deprecated in version 1.8 will continue to work in versions 1.8 and 1.9, and be dropped in version 1.10.

Upgrade process

We recommend upgrading one feature release at a time, even if your project is several versions behind the current one. This has a number of advantages over skipping directly to the newest release:

	If anything breaks as a result of the upgrade, you will know which version caused it, and will be able to troubleshoot accordingly;

	Deprecation warnings shown in the console output will notify you of any code changes you need to make before upgrading to the following version;

	Some releases make database schema changes that need to be reflected on your project by running ./manage.py makemigrations - this is liable to fail if too many schema changes happen in one go.

Before upgrading to a new feature release:

	Check your project’s console output for any deprecation warnings, and fix them where necessary;

	Check the new version’s release notes, and the Compatible Django / Python versions table below, for any dependencies that need upgrading first;

	Make a backup of your database.

To upgrade:

	Update the wagtail line in your project’s requirements.txt file to specify the latest patch release of the version you wish to install. For example, to upgrade to version 1.8.x, the line should read:

wagtail>=1.8,<1.9

	Run:

pip install -r requirements.txt
./manage.py makemigrations
./manage.py migrate

	Make any necessary code changes as directed in the “Upgrade considerations” section of the release notes.

	Test that your project is working as expected.

Remember that the JavaScript and CSS files used in the Wagtail admin may have changed between releases - if you encounter erratic behaviour on upgrading, ensure that you have cleared your browser cache. When deploying the upgrade to a production server, be sure to run ./manage.py collectstatic to make the updated static files available to the web server. In production, we recommend enabling ManifestStaticFilesStorage [https://docs.djangoproject.com/en/stable/ref/contrib/staticfiles/#manifeststaticfilesstorage] in the STATICFILES_STORAGE setting - this ensures that different versions of files are assigned distinct URLs.

Compatible Django / Python versions

New feature releases frequently add support for newer versions of Django and Python, and drop support for older ones. We recommend always carrying out upgrades to Django and Python as a separate step from upgrading Wagtail.

The compatible versions of Django and Python for each Wagtail release are:

	Wagtail release

	Compatible Django versions

	Compatible Python versions

	0.1

	1.6

	2.7

	0.2

	1.6

	2.7

	0.3

	1.6

	2.6, 2.7

	0.4

	1.6

	2.6, 2.7, 3.2, 3.3, 3.4

	0.5

	1.6

	2.6, 2.7, 3.2, 3.3, 3.4

	0.6

	1.6, 1.7

	2.6, 2.7, 3.2, 3.3, 3.4

	0.7

	1.6, 1.7

	2.6, 2.7, 3.2, 3.3, 3.4

	0.8 LTS

	1.6, 1.7

	2.6, 2.7, 3.2, 3.3, 3.4

	1.0

	1.7, 1.8

	2.7, 3.3, 3.4

	1.1

	1.7, 1.8

	2.7, 3.3, 3.4

	1.2

	1.7, 1.8

	2.7, 3.3, 3.4, 3.5

	1.3

	1.7, 1.8, 1.9

	2.7, 3.3, 3.4, 3.5

	1.4 LTS

	1.8, 1.9

	2.7, 3.3, 3.4, 3.5

	1.5

	1.8, 1.9

	2.7, 3.3, 3.4, 3.5

	1.6

	1.8, 1.9, 1.10

	2.7, 3.3, 3.4, 3.5

	1.7

	1.8, 1.9, 1.10

	2.7, 3.3, 3.4, 3.5

	1.8 LTS

	1.8, 1.9, 1.10

	2.7, 3.3, 3.4, 3.5

	1.9

	1.8, 1.9, 1.10

	2.7, 3.3, 3.4, 3.5

	1.10

	1.8, 1.10, 1.11

	2.7, 3.4, 3.5, 3.6

	1.11

	1.8, 1.10, 1.11

	2.7, 3.4, 3.5, 3.6

	1.12 LTS

	1.8, 1.10, 1.11

	2.7, 3.4, 3.5, 3.6

	1.13 LTS

	1.8, 1.10, 1.11

	2.7, 3.4, 3.5, 3.6

	2.0

	1.11, 2.0

	3.4, 3.5, 3.6

	2.1

	1.11, 2.0

	3.4, 3.5, 3.6

	2.2

	1.11, 2.0

	3.4, 3.5, 3.6

	2.3 LTS

	1.11, 2.0, 2.1

	3.4, 3.5, 3.6

	2.4

	2.0, 2.1

	3.4, 3.5, 3.6, 3.7

	2.5

	2.0, 2.1, 2.2

	3.4, 3.5, 3.6, 3.7

	2.6

	2.0, 2.1, 2.2

	3.5, 3.6, 3.7

	2.7 LTS

	2.0, 2.1, 2.2

	3.5, 3.6, 3.7, 3.8

	2.8

	2.1, 2.2, 3.0

	3.5, 3.6, 3.7, 3.8

 Wagtail 2.8 release notes

Wagtail 2.8 release notes

	What’s new

	Upgrade considerations

What’s new

Django 3.0 support

This release is compatible with Django 3.0. Compatibility fixes were contributed by Matt Westcott and Mads Jensen.

Improved page locking

The page locking feature has been revised so that the editor locking a page is given exclusive edit access to it, rather than it becoming read-only to everyone. A new Reports menu allows admin / moderator level users to see the currently locked pages, and unlock them if required.

This feature was developed by Karl Hobley and Jacob Topp-Mugglestone. Thanks to The Motley Fool [https://www.fool.com/] for sponsoring this feature.

Other features

	Removed leftover Python 2.x compatibility code (Sergey Fedoseev)

	Combine flake8 configurations (Sergey Fedoseev)

	Improve diffing behavior for text fields (Aliosha Padovani)

	Improve contrast of disabled inputs (Nick Smith)

	Added get_document_model_string function (Andrey Smirnov)

	Added support for Cloudflare API tokens for frontend cache invalidation (Tom Usher)

	Cloudflare frontend cache invalidation requests are now sent in chunks of 30 to fit within API limits (Tom Usher)

	Added ancestors field to the pages endpoint in admin API (Karl Hobley)

	Removed Django admin management of Page & Site models (Andreas Bernacca)

	Cleaned up Django docs URLs in documentation (Pete Andrew)

	Add StreamFieldPanel to available panel types in documentation (Dan Swain)

	Add {{ block.super }} example to ModelAdmin customisation in documentation (Dan Swain)

	Add ability to filter image index by a tag (Benedikt Willi)

	Add partial experimental support for nested InlinePanels (Matt Westcott, Sam Costigan, Andy Chosak, Scott Cranfill)

	Added cache control headers when serving documents (Johannes Vogel)

	Use sensitive_post_parameters on password reset form (Dan Braghis)

	Add WAGTAILEMBEDS_RESPONSIVE_HTML setting to remove automatic addition of responsive-object around embeds (Kalob Taulien)

Bug fixes

	Rename documents listing column ‘uploaded’ to ‘created’ (LB (Ben Johnston))

	Unbundle the l18n library as it was bundled to avoid installation errors which have been resolved (Matt Westcott)

	Prevent error when comparing pages that reference a model with a custom primary key (Fidel Ramos)

	Moved get_document_model location so it can be imported when Models are not yet loaded (Andrey Smirnov)

	Use correct HTML escaping of Jinja2 form templates for StructBlocks (Brady Moe)

	All templates with wagtailsettings and modeladmin now use block.super for extra_js & extra_css (Timothy Bautista)

	Layout issue when using FieldRowPanel with a heading (Andreas Bernacca)

	file_size and file_hash now updated when Document file changed (Andreas Bernacca)

	Fixed order of URLs in project template so that static / media URLs are not blocked (Nick Smith)

	Added verbose_name_plural to form submission model (Janneke Janssen)

	Prevent update_index failures and incorrect front-end rendering on blank TableBlock (Carlo Ascani)

	Dropdown initialisation on the search page after AJAX call (Eric Sherman)

	Make sure all modal chooser search results correspond to the latest search by canceling previous requests (Esper Kuijs)

Upgrade considerations

Removed support for Django 2.0

Django 2.0 is no longer supported as of this release; please upgrade to Django 2.1 or above before upgrading Wagtail.

Edit locking behaviour changed

The behaviour of the page locking feature in the admin interface has been changed.
In past versions, the page lock would apply to all users including the user who
locked the page. Now, the user who locked the page can still edit it but all other
users cannot.

Pages that were locked before this release will continue to be locked in the same
way as before, so this only applies to newly locked pages. If you would like to
restore the previous behaviour, you can set the
WAGTAILADMIN_GLOBAL_PAGE_EDIT_LOCK setting to True.

Responsive HTML for embeds no longer added by default

In previous versions of Wagtail, embedded media elements were given
a class name of responsive-object and an inline padding-bottom style to assist
in styling them responsively. These are no longer added by default. To restore the previous
behaviour, add WAGTAILEMBEDS_RESPONSIVE_HTML = True to your project settings.

API endpoint classes have moved

For consistency with Django REST Framework, the PagesAPIEndpoint, ImagesAPIEndpoint and DocumentsAPIEndpoint classes have been renamed to PagesAPIViewSet, ImagesAPIViewSet and DocumentsAPIViewSet and moved to the views module in their respective packages. Projects using the Wagtail API should update their registration code accordingly.

Old code:

from wagtail.api.v2.endpoints import PagesAPIEndpoint
from wagtail.api.v2.router import WagtailAPIRouter
from wagtail.images.api.v2.endpoints import ImagesAPIEndpoint
from wagtail.documents.api.v2.endpoints import DocumentsAPIEndpoint

api_router = WagtailAPIRouter('wagtailapi')
api_router.register_endpoint('pages', PagesAPIEndpoint)
api_router.register_endpoint('images', ImagesAPIEndpoint)
api_router.register_endpoint('documents', DocumentsAPIEndpoint)

New code:

from wagtail.api.v2.views import PagesAPIViewSet
from wagtail.api.v2.router import WagtailAPIRouter
from wagtail.images.api.v2.views import ImagesAPIViewSet
from wagtail.documents.api.v2.views import DocumentsAPIViewSet

api_router = WagtailAPIRouter('wagtailapi')
api_router.register_endpoint('pages', PagesAPIViewSet)
api_router.register_endpoint('images', ImagesAPIViewSet)
api_router.register_endpoint('documents', DocumentsAPIViewSet)

wagtail.documents.models.get_document_model has moved

The get_document_model function should now be imported from wagtail.documents rather than wagtail.documents.models. See Custom document model.

Removed Page and Site models from Django admin

The Page and Site models are no longer editable through the Django admin backend. If required these models can be re-registered within your own project using Django’s ModelAdmin [https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#modeladmin-objects]:

my_app/admin.py
from django.contrib import admin

from wagtail.core.models import Page, Site

admin.site.register(Site)
admin.site.register(Page)

 Wagtail 2.7.1 release notes

Wagtail 2.7.1 release notes

	What’s new

What’s new

Bug fixes

	Management command startup checks under ManifestStaticFilesStorage no longer fail if collectstatic has not been run first (Alex Tomkins)

 Wagtail 2.7 release notes

Wagtail 2.7 release notes

	What’s new

	Upgrade considerations

Wagtail 2.7 is designated a Long Term Support (LTS) release. Long Term Support releases will continue to receive maintenance updates as necessary to address security and data-loss related issues, up until the next LTS release (typically a period of 12 months).

What’s new

Improved StreamField design

[image: ../_images/releasenotes_2_7_streamfield_styles.png]
The design of the StreamField user interface has been updated to improve clarity and usability, including better handling of nested blocks. This work was completed by Bertrand Bordage as part of the Wagtail’s First Hatch [https://www.kickstarter.com/projects/noripyt/wagtails-first-hatch] crowdfunding campaign. We would like to thank all supporters of the campaign [https://wagtail.io/blog/wagtails-first-hatch-backers/].

WebP image support

Images can now be uploaded and rendered in WebP [https://developers.google.com/speed/webp] format; see Image file formats for details. This feature was developed by frmdstryr, Karl Hobley and Matt Westcott.

Other features

	Added Elasticsearch 7 support (pySilver)

	Added Python 3.8 support (John Carter, Matt Westcott)

	Added construct_page_listing_buttons hook (Michael van Tellingen)

	Added more detailed documentation and troubleshooting for installing OpenCV for feature detection (Daniele Procida)

	Move and refactor upgrade notification JS (Jonny Scholes)

	Remove need for Elasticsearch update_all_types workaround, upgrade minimum release to 6.4.0 or above (Jonathan Liuti)

	Add ability to insert internal anchor links/links with fragment identifiers in Draftail (rich text) fields (Iman Syed)

	Added Table Block caption for accessibility (Rahmi Pruitt)

	Add ability for users to change their own name via the account settings page (Kevin Howbrook)

	Add ability to insert telephone numbers as links in Draftail (rich text) fields (Mikael Engström and Liam Brenner)

	Increase delay before search in the snippet chooser, to prevent redundant search request round trips (Robert Rollins)

	Add WAGTAIL_EMAIL_MANAGEMENT_ENABLED setting to determine whether users can change their email address (Janne Alatalo)

	Recognise Soundcloud artist URLs as embeddable (Kiril Staikov)

	Add WAGTAILDOCS_SERVE_METHOD setting to determine how document downloads will be linked to and served (Tobias McNulty, Matt Westcott)

	Add WAGTAIL_MODERATION_ENABLED setting to enable / disable the ‘Submit for Moderation’ option (Jacob Topp-Mugglestone) - thanks to The Motley Fool [https://www.fool.com/] for sponsoring this feature

	Added settings to customise pagination page size for the Images admin area (Brian Whitton)

	Added ARIA role to TableBlock output (Matt Westcott)

	Added cache-busting query parameters to static files within the Wagtail admin (Matt Westcott)

	Allow register_page_action_menu_item and construct_page_action_menu hooks to override the default menu action (Rahmi Pruitt, Matt Westcott) - thanks to The Motley Fool [https://www.fool.com/] for sponsoring review of this feature

	WAGTAILIMAGES_MAX_IMAGE_PIXELS limit now takes the number of animation frames into account (Karl Hobley)

Bug fixes

	Added line breaks to long filenames on multiple image / document uploader (Kevin Howbrook)

	Added https support for Scribd oEmbed provider (Rodrigo)

	Changed StreamField group label color so labels are visible (Catherine Farman)

	Prevented images with a very wide aspect ratio from being displayed distorted in the rich text editor (Iman Syed)

	Prevent exception when deleting a model with a protected One-to-one relationship (Neal Todd)

	Added labels to snippet bulk edit checkboxes for screen reader users (Martey Dodoo)

	Middleware responses during page preview are now properly returned to the user (Matt Westcott)

	Default text of page links in rich text uses the public page title rather than the admin display title (Andy Chosak)

	Specific page permission checks are now enforced when viewing a page revision (Andy Chosak)

	pageurl and slugurl tags no longer fail when request.site is None (Samir Shah)

	Output form media on add/edit image forms with custom models (Matt Westcott)

	Output form media on add/edit document forms with custom models (Sergey Fedoseev)

	Fixes layout for the clear checkbox in default FileField widget (Mikalai Radchuk)

	Remove ASCII conversion from Postgres search backend, to support stemming in non-Latin alphabets (Pavel Denisov)

	Prevent tab labels on page edit view from being cut off on very narrow screens (Kevin Howbrook)

	Very long words in page listings are now broken where necessary (Kevin Howbrook)

	Language chosen in user preferences no longer persists on subsequent requests (Bojan Mihelac)

	Prevent new block IDs from being assigned on repeated calls to StreamBlock.get_prep_value (Colin Klein)

	Prevent broken images in notification emails when static files are hosted on a remote domain (Eduard Luca)

	Replace styleguide example avatar with default image to avoid issues when custom user model is used (Matt Westcott)

	DraftailRichTextArea is no longer treated as a hidden field by Django’s form logic (Sergey Fedoseev)

	Replace format() placeholders in translatable strings with % formatting (Matt Westcott)

	Altering Django REST Framework’s DEFAULT_AUTHENTICATION_CLASSES setting no longer breaks the page explorer menu and admin API (Matt Westcott)

	Regression - missing label for external link URL field in link chooser (Stefani Castellanos)

Upgrade considerations

Query strings added to static file URLs within the admin

To avoid problems caused by outdated cached JavaScript / CSS files following a Wagtail upgrade, URLs to static files within the Wagtail admin now include a version-specific query parameter of the form ?v=1a2b3c4d. Under certain front-end cache configurations (such as Cloudflare’s ‘No Query String’ caching level [https://support.cloudflare.com/hc/en-us/articles/200168256-What-are-Cloudflare-s-caching-levels-]), the presence of this parameter may prevent the file from being cached at all. If you are using such a setup, and have some other method in place to expire outdated files (e.g. clearing the cache on deployment), you can disable the query parameter by setting WAGTAILADMIN_STATIC_FILE_VERSION_STRINGS to False in your project settings. (Note that this is automatically disabled when ManifestStaticFilesStorage is in use.)

Page.dummy_request is deprecated

The internal Page.dummy_request method (which generates an HTTP request object simulating a real page request, for use in previews) has been deprecated, as it did not correctly handle errors generated during middleware processing. Any code that calls this method to render page previews should be updated to use the new method Page.make_preview_request(original_request=None, preview_mode=None), which builds the request and calls Page.serve_preview as a single operation.

Changes to document serving on remote storage backends (Amazon S3 etc)

This release introduces a new setting WAGTAILDOCS_SERVE_METHOD to control how document downloads are served. On previous versions of Wagtail, document files would always be served through a Django view, to allow permission checks to be applied. When using a remote storage backend such as Amazon S3, this meant that the document would be downloaded to the Django server on every download request.

In Wagtail 2.7, the default behaviour on remote storage backends is to redirect to the storage’s underlying URL after performing the permission check. If this is unsuitable for your project (for example, your storage provider is configured to block public access, or revealing its URL would be a security risk) you can revert to the previous behaviour by setting WAGTAILDOCS_SERVE_METHOD to 'serve_view'.

Template change for page action menu hooks

When customising the action menu on the page edit view through the register_page_action_menu_item or construct_page_action_menu hook, the ActionMenuItem object’s template attribute or render_html method can be overridden to customise the menu item’s HTML. As of Wagtail 2.7, the HTML returned from these should not include the enclosing element.

Any add-on library that uses this feature and needs to preserve backward compatibility with previous Wagtail versions can conditionally reinsert the wrapper through its render_html method - for example:

from django.utils.html import format_html
from wagtail import VERSION as WAGTAIL_VERSION
from wagtail.admin.action_menu import ActionMenuItem

class CustomMenuItem(ActionMenuItem):
 template = 'myapp/my_menu_item.html'

 def render_html(self, request, parent_context):
 html = super().render_html(request, parent_context)
 if WAGTAIL_VERSION < (2, 7):
 html = format_html('{}', html)
 return html

wagtail.admin.utils and wagtail.admin.decorators modules deprecated

The modules wagtail.admin.utils and wagtail.admin.decorators have been deprecated. The helper functions defined here exist primarily for Wagtail’s internal use; however, some of them (particularly send_mail and permission_required) may be found in user code, and import lines will need to be updated. The new locations for these definitions are as follows:

	Definition

	Old location

	New location

	any_permission_required

	wagtail.admin.utils

	wagtail.admin.auth

	permission_denied

	wagtail.admin.utils

	wagtail.admin.auth

	permission_required

	wagtail.admin.utils

	wagtail.admin.auth

	PermissionPolicyChecker

	wagtail.admin.utils

	wagtail.admin.auth

	user_has_any_page_permission

	wagtail.admin.utils

	wagtail.admin.auth

	user_passes_test

	wagtail.admin.utils

	wagtail.admin.auth

	users_with_page_permission

	wagtail.admin.utils

	wagtail.admin.auth

	reject_request

	wagtail.admin.decorators

	wagtail.admin.auth

	require_admin_access

	wagtail.admin.decorators

	wagtail.admin.auth

	get_available_admin_languages

	wagtail.admin.utils

	wagtail.admin.localization

	get_available_admin_time_zones

	wagtail.admin.utils

	wagtail.admin.localization

	get_js_translation_strings

	wagtail.admin.utils

	wagtail.admin.localization

	WAGTAILADMIN_PROVIDED_LANGUAGES

	wagtail.admin.utils

	wagtail.admin.localization

	send_mail

	wagtail.admin.utils

	wagtail.admin.mail

	send_notification

	wagtail.admin.utils

	wagtail.admin.mail

	get_object_usage

	wagtail.admin.utils

	wagtail.admin.models

	popular_tags_for_model

	wagtail.admin.utils

	wagtail.admin.models

	get_site_for_user

	wagtail.admin.utils

	wagtail.admin.navigation

 Wagtail 2.6.3 release notes

Wagtail 2.6.3 release notes

	What’s new

What’s new

Bug fixes

	Altering Django REST Framework’s DEFAULT_AUTHENTICATION_CLASSES setting no longer breaks the page explorer menu and admin API (Matt Westcott)

 Wagtail 2.6.2 release notes

Wagtail 2.6.2 release notes

	What’s new

What’s new

Bug fixes

	Prevent search indexing failures on Postgres 9.4 and Django >= 2.2.1 (Matt Westcott)

 Wagtail 2.6.1 release notes

Wagtail 2.6.1 release notes

	What’s new

What’s new

Bug fixes

	Prevent Javascript errors caused by unescaped quote characters in translation strings (Matt Westcott)

 Wagtail 2.6 release notes

Wagtail 2.6 release notes

	What’s new

	Upgrade considerations

What’s new

Accessibility targets and improvements

Wagtail now has official accessibility support targets: we are aiming for compliance with WCAG2.1 [https://www.w3.org/TR/WCAG21/], AA level. WCAG 2.1 is the international standard which underpins many national accessibility laws.

Wagtail isn’t fully compliant just yet, but we have made many changes to the admin interface to get there. We thank the UK Government (in particular the CMS team at the Department for International Trade), who commissioned many of these improvements.

Here are changes which should make Wagtail more usable for all users regardless of abilities:

	Increase font-size across the whole admin (Beth Menzies, Katie Locke)

	Improved text color contrast across the whole admin (Beth Menzies, Katie Locke)

	Added consistent focus outline styles across the whole admin (Thibaud Colas)

	Ensured the ‘add child page’ button displays when focused (Helen Chapman, Katie Locke)

This release also contains many big improvements for screen reader users:

	Added more ARIA landmarks across the admin interface and welcome page for screen reader users to navigate the CMS more easily (Beth Menzies)

	Improved heading structure for screen reader users navigating the CMS admin (Beth Menzies, Helen Chapman)

	Make icon font implementation more screen-reader-friendly (Thibaud Colas)

	Removed buggy tab order customisations in the CMS admin (Jordan Bauer)

	Screen readers now treat page-level action dropdowns as navigation instead of menus (Helen Chapman)

	Fixed occurrences of invalid HTML across the CMS admin (Thibaud Colas)

	Add empty alt attributes to all images in the CMS admin (Andreas Bernacca)

	Fixed focus not moving to the pages explorer menu when open (Helen Chapman)

We’ve also had a look at how controls are labeled across the UI for screen reader users:

	Add image dimensions in image gallery and image choosers for screen reader users (Helen Chapman)

	Add more contextual information for screen readers in the explorer menu’s links (Helen Chapman)

	Make URL generator preview image alt translatable (Thibaud Colas)

	Screen readers now announce “Dashboard” for the main nav’s logo link instead of Wagtail’s version number (Thibaud Colas)

	Remove duplicate labels in image gallery and image choosers for screen reader users (Helen Chapman)

	Added a label to the modals’ “close” button for screen reader users (Helen Chapman, Katie Locke)

	Added labels to permission checkboxes for screen reader users (Helen Chapman, Katie Locke)

	Improve screen-reader labels for action links in page listing (Helen Chapman, Katie Locke)

	Add screen-reader labels for table headings in page listing (Helen Chapman, Katie Locke)

	Add screen reader labels for page privacy toggle, edit lock, status tag in page explorer & edit views (Helen Chapman, Katie Locke)

	Add screen-reader labels for dashboard summary cards (Helen Chapman, Katie Locke)

	Add screen-reader labels for privacy toggle of collections (Helen Chapman, Katie Locke)

Again, this is still a work in progress – if you are aware of other existing accessibility issues, please do open an issue [https://github.com/wagtail/wagtail/issues?q=is%3Aopen+is%3Aissue+label%3AAccessibility] if there isn’t one already.

Other features

	Added support for short_description for field labels in modeladmin’s InspectView (Wesley van Lee)

	Rearranged SCSS folder structure to the client folder and split them approximately according to ITCSS. (Naomi Morduch Toubman, Jonny Scholes, Janneke Janssen, Hugo van den Berg)

	Added support for specifying cell alignment on TableBlock (Samuel Mendes)

	Added more informative error when a non-image object is passed to the image template tag (Deniz Dogan)

	Added ButtonHelper examples in the modelAdmin primer page within documentation (Kalob Taulien)

	Multiple clarifications, grammar and typo fixes throughout documentation (Dan Swain)

	Use correct URL in API example in documentation (Michael Bunsen)

	Move datetime widget initialiser JS into the widget’s form media instead of page editor media (Matt Westcott)

	Add form field prefixes for input forms in chooser modals (Matt Westcott)

	Removed version number from the logo link’s title. The version can now be found under the Settings menu (Thibaud Colas)

	Added “don’t delete” option to confirmation screen when deleting images, documents and modeladmin models (Kevin Howbrook)

	Added branding_title template block for the admin title prefix (Dillen Meijboom)

	Added support for custom search handler classes to modeladmin’s IndexView, and added a class that uses the default Wagtail search backend for searching (Seb Brown, Andy Babic)

	Update group edit view to expose the Permission object for each checkbox (George Hickman)

	Improve performance of Pages for Moderation panel (Fidel Ramos)

	Added process_child_object and exclude_fields arguments to Page.copy() to make it easier for third-party apps to customise copy behavior (Karl Hobley)

	Added Page.with_content_json(), allowing revision content loading behaviour to be customised on a per-model basis (Karl Hobley)

	Added construct_settings_menu hook (Jordan Bauer, Quadric)

	Fixed compatibility of date / time choosers with wagtail-react-streamfield (Mike Hearn)

	Performance optimization of several admin functions, including breadcrumbs, home and index pages (Fidel Ramos)

Bug fixes

	ModelAdmin no longer fails when filtering over a foreign key relation (Jason Dilworth, Matt Westcott)

	The Wagtail version number is now visible within the Settings menu (Kevin Howbrook)

	Scaling images now rounds values to an integer so that images render without errors (Adrian Brunyate)

	Revised test decorator to ensure TestPageEditHandlers test cases run correctly (Alex Tomkins)

	Wagtail bird animation in admin now ends correctly on all browsers (Deniz Dogan)

	Explorer menu no longer shows sibling pages for which the user does not have access (Mike Hearn)

	Admin HTML now includes the correct dir attribute for the active language (Andreas Bernacca)

	Fix type error when using --chunk_size argument on ./manage.py update_index (Seb Brown)

	Avoid rendering entire form in EditHandler’s repr method (Alex Tomkins)

	Add empty alt attributes to HTML output of Embedly and oEmbed embed finders (Andreas Bernacca)

	Clear pending AJAX request if error occurs on page chooser (Matt Westcott)

	Prevent text from overlapping in focal point editing UI (Beth Menzies)

	Restore custom “Date” icon for scheduled publishing panel in Edit page’s Settings tab (Helen Chapman)

	Added missing form media to user edit form template (Matt Westcott)

	Page.copy() no longer copies child objects when the accessor name is included in exclude_fields_in_copy (Karl Hobley)

	Clicking the privacy toggle while the page is still loading no longer loads the wrong data in the page (Helen Chapman)

	Added missing is_stored_locally method to AbstractDocument (jonny5532)

	Query model no longer removes punctuation as part of string normalisation (William Blackie)

	Make login test helper work with user models with non-default username fields (Andrew Miller)

	Delay dirty form check to prevent “unsaved changes” warning from being wrongly triggered (Thibaud Colas)

Upgrade considerations

Removed support for Python 3.4

Python 3.4 is no longer supported as of this release; please upgrade to Python 3.5 or above before upgrading Wagtail.

Icon font implementation changes

The icon font implementation has been changed to be invisible for screen-reader users, by switching to using Private Use Areas [https://en.wikipedia.org/wiki/Private_Use_Areas] Unicode code points. All of the icon classes (icon-user, icon-search, etc) should still work the same, except for two which have been removed because they were duplicates:

	icon-picture is removed. Use icon-image instead (same visual).

	icon-file-text-alt is removed. Use icon-doc-full instead (same visual).

For a list of all available icons, please see the UI Styleguide.

 Wagtail 2.5.2 release notes

Wagtail 2.5.2 release notes

	What’s new

What’s new

Bug fixes

	Delay dirty form check to prevent “unsaved changes” warning from being wrongly triggered (Thibaud Colas)

 Wagtail 2.5.1 release notes

Wagtail 2.5.1 release notes

	What’s new

What’s new

Bug fixes

	Prevent crash when comparing StructBlocks in revision history (Adrian Turjak, Matt Westcott)

 Wagtail 2.5 release notes

Wagtail 2.5 release notes

	What’s new

	Upgrade considerations

What’s new

Django 2.2 support

This release is compatible with Django 2.2. Compatibility fixes were contributed by Matt Westcott and Andy Babic.

New Markdown shortcuts in rich text

Wagtail’s rich text editor now supports using Markdown shortcuts for inline formatting:

	** for bold

	_ for italic

	~ for strikethrough (if enabled)

	` for code (if enabled)

To learn other shortcuts, have a look at the keyboard shortcuts [https://www.draftail.org/docs/keyboard-shortcuts] reference.

Other features

	Added support for customising EditHandler-based forms on a per-request basis (Bertrand Bordage)

	Added more informative error message when |richtext filter is applied to a non-string value (mukesh5)

	Automatic search indexing can now be disabled on a per-model basis via the search_auto_update attribute (Karl Hobley)

	Improved diffing of StreamFields when comparing page revisions (Karl Hobley)

	Highlight broken links to pages and missing documents in rich text (Brady Moe)

	Preserve links when copy-pasting rich text content from Wagtail to other tools (Thibaud Colas)

	Rich text to contentstate conversion now prioritises more specific rules, to accommodate <p> and
 elements with attributes (Matt Westcott)

	Added limit image upload size by number of pixels (Thomas Elliott)

	Added manage.py wagtail_update_index alias to avoid clashes with update_index commands from other packages (Matt Westcott)

	Renamed target_model argument on PageChooserBlock to page_type (Loic Teixeira)

	edit_handler and panels can now be defined on a ModelAdmin definition (Thomas Kremmel)

	Add Learn Wagtail to third-party tutorials in documentation (Matt Westcott)

	Add a Django setting TAG_LIMIT to limit number of tags that can be added to any taggit model (Mani)

	Added instructions on how to generate urls for ModelAdmin to documentation (LB (Ben Johnston), Andy Babic)

	Added option to specify a fallback URL on {% pageurl %} (Arthur Holzner)

	Add support for more rich text formats, disabled by default: blockquote, superscript, subscript, strikethrough, code (Md Arifin Ibne Matin)

	Added max_count_per_parent option on page models to limit the number of pages of a given type that can be created under one parent page (Wesley van Lee)

	StreamField field blocks now accept a validators argument (Tom Usher)

	Added edit / delete buttons to snippet index and “don’t delete” option to confirmation screen, for consistency with pages (Kevin Howbrook)

	Added name attributes to all built-in page action menu items (LB (Ben Johnston))

	Added validation on the filter string to the Jinja2 image template tag (Jonny Scholes)

	Changed the pages reordering UI toggle to make it easier to find (Katie Locke, Thibaud Colas)

	Added support for rich text link rewrite handlers for external and email links (Md Arifin Ibne Matin)

	Clarify installation instructions in documentation, especially regarding virtual environments. (Naomi Morduch Toubman)

Bug fixes

	Set SERVER_PORT to 443 in Page.dummy_request() for HTTPS sites (Sergey Fedoseev)

	Include port number in Host header of Page.dummy_request() (Sergey Fedoseev)

	Validation error messages in InlinePanel no longer count towards max_num when disabling the ‘add’ button (Todd Dembrey, Thibaud Colas)

	Rich text to contentstate conversion now ignores stray closing tags (frmdstryr)

	Escape backslashes in postgres_search queries (Hammy Goonan)

	Parent page link in page chooser search results no longer navigates away (Asanka Lihiniyagoda, Sævar Öfjörð Magnússon)

	routablepageurl tag now correctly omits domain part when multiple sites exist at the same root (Gassan Gousseinov)

	Added missing collection column specifier on document listing template (Sergey Fedoseev)

	Page Copy will now also copy ParentalManyToMany field relations (LB (Ben Johnston))

	Admin HTML header now includes correct language code (Matt Westcott)

	Unclear error message when saving image after focal point edit (Hugo van den Berg)

	Increase max length on Embed.thumbnail_url to 255 characters (Kevin Howbrook)

	send_mail now correctly uses the html_message kwarg for HTML messages (Tiago Requeijo)

	Page copying no longer allowed if page model has reached its max_count (Andy Babic)

	Don’t show page type on page chooser button when multiple types are allowed (Thijs Kramer)

	Make sure page chooser search results correspond to the latest search by canceling previous requests (Esper Kuijs)

	Inform user when moving a page from one parent to another where there is an already existing page with the same slug (Casper Timmers)

	User add/edit forms now support form widgets with JS/CSS media (Damian Grinwis)

	Rich text processing now preserves non-breaking spaces instead of converting them to normal spaces (Wesley van Lee)

	Prevent autocomplete dropdowns from appearing over date choosers on Chrome (Kevin Howbrook)

	Prevent crash when logging HTTP errors on Cloudflare cache purging (Kevin Howbrook)

	Prevent rich text editor crash when filtering copy-pasted content and the last block is to be removed, e.g. unsupported image (Thibaud Colas)

	Removing rich text links / documents now also works when the text selection is backwards (Thibaud Colas)

	Prevent the rich text editor from crashing when copy-paste filtering removes all of its content (Thibaud Colas)

	Page chooser now respects custom get_admin_display_title methods on parent page and breadcrumb (Haydn Greatnews)

	Added consistent whitespace around sortable table headings (Matt Westcott)

	Moved locale names for Chinese (Simplified) and Chinese (Traditional) to zh_Hans and zh_Hant (Matt Westcott)

Upgrade considerations

EditHandler.bind_to_model and EditHandler.bind_to_instance deprecated

The internal EditHandler methods bind_to_model and bind_to_instance have been deprecated, in favour of a new combined bind_to method which accepts model, instance, request and form as optional keyword arguments. Any user code which calls EditHandler.bind_to_model(model) should be updated to use EditHandler.bind_to(model=model) instead; any user code which calls EditHandler.bind_to_instance(instance, request, form) should be updated to use EditHandler.bind_to(instance=instance, request=request, form=form).

Changes to admin pagination helpers

A number of changes have been made to pagination handling within the Wagtail admin; these are internal API changes, but may affect applications and third-party packages that add new paginated object listings, including chooser modals, to the admin. The paginate function in wagtail.utils.pagination has been deprecated in favour of the django.core.paginator.Paginator.get_page method introduced in Django 2.0 - a call such as:

from wagtail.utils.pagination import paginate

paginator, page = paginate(request, object_list, per_page=25)

should be replaced with:

from django.core.paginator import Paginator

paginator = Paginator(object_list, per_page=25)
page = paginator.get_page(request.GET.get('p'))

Additionally, the is_ajax flag on the template wagtailadmin/shared/pagination_nav.html has been deprecated in favour of a new template wagtailadmin/shared/ajax_pagination_nav.html:

{% include "wagtailadmin/shared/pagination_nav.html" with items=page_obj is_ajax=1 %}

should become:

{% include "wagtailadmin/shared/ajax_pagination_nav.html" with items=page_obj %}

New rich text formats

Wagtail now has built-in support for new rich text formats, disabled by default:

	blockquote, using the blockquote Draft.js block type, saved as a <blockquote> tag.

	superscript, using the SUPERSCRIPT Draft.js inline style, saved as a <sup> tag.

	subscript, using the SUBSCRIPT Draft.js inline style, saved as a <sub> tag.

	strikethrough, using the STRIKETHROUGH Draft.js inline style, saved as a <s> tag.

	code, using the CODE Draft.js inline style, saved as a <code> tag.

Projects already using those exact Draft.js type and HTML tag combinations can safely replace their feature definitions with the new built-ins. Projects that use the same feature identifier can keep their existing feature definitions as overrides. Finally, if the Draft.js types / HTML tags are used but with a different combination, do not enable the new feature definitions to avoid conflicts in storage or editor behavior.

register_link_type and register_embed_type methods for rich text tag rewriting have changed

The FeatureRegistry.register_link_type and FeatureRegistry.register_embed_type methods, which define how links and embedded media in rich text are converted to HTML, now accept a handler class. Previously, they were passed an identifier string and a rewrite function. For details of updating your code to the new convention, see Rewrite handlers.

Chinese language locales changed to zh_Hans and zh_Hant

The translations for Chinese (Simplified) and Chinese (Traditional) are now available under the locale names zh_Hans and zh_Hant respectively, rather than zh_CN and zh_TW. Projects that currently use the old names for the LANGUAGE_CODE setting may need to update the settings file to use the new names.

 Wagtail 2.4 release notes

Wagtail 2.4 release notes

	What’s new

	Upgrade considerations

What’s new

New “Welcome to your Wagtail site” Starter Page

When using the wagtail start command to make a new site, users will now be greeted with a proper starter page. Thanks to Timothy Allen and Scott Cranfill for pulling this off!

[image: Wagtail welcome message]

Other features

	Added support for Python 3.7 (Matt Westcott)

	Added max_count option on page models to limit the number of pages of a particular type that can be created (Dan Braghis)

	Document and image choosers now show the document / image’s collection (Alejandro Garza, Janneke Janssen)

	New image_url template tag allows to generate dynamic image URLs, so image renditions are being created outside the main request which improves performance. Requires extra configuration, see Dynamic image serve view (Yannick Chabbert, Dan Braghis).

	Added ability to run individual tests through tox (Benjamin Bach)

	Collection listings are now ordered by name (Seb Brown)

	Added file_hash field to documents (Karl Hobley, Dan Braghis)

	Added last login to the user overview (Noah B Johnson)

	Changed design of image editing page (Janneke Janssen, Ben Enright)

	Added Slovak character map for JavaScript slug generation (Andy Chosak)

	Make documentation links on welcome page work for prereleases (Matt Westcott)

	Allow overridden copy() methods in Page subclasses to be called from the page copy view (Robert Rollins)

	Users without a preferred language set on their profile now use language selected by Django’s LocaleMiddleware (Benjamin Bach)

	Added hooks to customise the actions menu on the page create/edit views (Matt Westcott)

	Cleanup: Use functools.partial() instead of django.utils.functional.curry() (Sergey Fedoseev)

	Added before_move_page and after_move_page hooks (Maylon Pedroso)

	Bulk deletion button for snippets is now hidden until items are selected (Karl Hobley)

Bug fixes

	Query objects returned from PageQuerySet.type_q can now be merged with | (Brady Moe)

	Add rel="noopener noreferrer" to target blank links (Anselm Bradford)

	Additional fields on custom document models now show on the multiple document upload view (Robert Rollins, Sergey Fedoseev)

	Help text does not overflow when using a combination of BooleanField and FieldPanel in page model (Dzianis Sheka)

	Document chooser now displays more useful help message when there are no documents in Wagtail document library (gmmoraes, Stas Rudakou)

	Allow custom logos of any height in the admin menu (Meteor0id)

	Allow nav menu to take up all available space instead of scrolling (Meteor0id)

	Users without the edit permission no longer see “Edit” links in list of pages waiting for moderation (Justin Focus, Fedor Selitsky)

	Redirects now return 404 when destination is unspecified or a page with no site (Hillary Jeffrey)

	Refactor all breakpoint definitions, removing style overlaps (Janneke Janssen)

	Updated draftjs_exporter to 2.1.5 to fix bug in handling adjacent entities (Thibaud Colas)

	Page titles consisting only of stopwords now generate a non-empty default slug (Andy Chosak, Janneke Janssen)

	Sitemap generator now allows passing a sitemap instance in the URL configuration (Mitchel Cabuloy, Dan Braghis)

Upgrade considerations

Removed support for Django 1.11

Django 1.11 is no longer supported in this release; please upgrade your project to Django 2.0 or 2.1 before upgrading to Wagtail 2.4.

Custom image model migrations created on Wagtail <1.8 may fail

Projects with a custom image model (see Custom image models) created on Wagtail 1.7 or earlier are likely to have one or more migrations that refer to the (now-deleted) wagtailimages.Filter model. In Wagtail 2.4, the migrations that defined this model have been squashed, which may result in the error ValueError: Related model 'wagtailimages.Filter' cannot be resolved when bringing up a new instance of the database. To rectify this, check your project’s migrations for ForeignKey references to wagtailimages.Filter, and change them to IntegerField definitions. For example, the line:

('filter', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='+', to='wagtailimages.Filter')),

should become:

('filter', models.IntegerField(blank=True, null=True)),

 Wagtail 2.3 release notes

Wagtail 2.3 release notes

	What’s new

	Upgrade considerations

Wagtail 2.3 is designated a Long Term Support (LTS) release. Long Term Support releases will continue to receive maintenance updates as necessary to address security and data-loss related issues, up until the next LTS release (typically a period of 8 months).

Note that Wagtail 2.3 will be the last release branch to support Django 1.11.

What’s new

Added Django 2.1 support

Wagtail is now compatible with Django 2.1. Compatibility fixes were contributed by Ryan Verner and Matt Westcott.

Improved colour contrast

Colour contrast within the admin interface has been improved, and now complies with WCAG 2 level AA. This was completed by Coen van der Kamp and Naomi Morduch Toubman based on earlier work from Edd Baldry, Naa Marteki Reed and Ben Enright.

Other features

	Added ‘scale’ image filter (Oliver Wilkerson)

	Added meta tag to prevent search engines from indexing admin pages (Karl Hobley)

	EmbedBlock now validates against recognised embed providers on save (Bertrand Bordage)

	Made cache control headers on Wagtail admin consistent with Django admin (Tomasz Knapik)

	Notification emails now include an “Auto-Submitted: auto-generated” header (Dan Braghis)

	Image chooser panels now show alt text as title (Samir Shah)

	Added download_url field to images in the API (Michael Harrison)

	Dummy requests for preview now preserve the HTTP Authorization header (Ben Dickinson)

Bug fixes

	Respect next param on login (Loic Teixeira)

	InlinePanel now handles relations that specify a related_query_name (Aram Dulyan)

	before_delete_page / after_delete_page hooks now run within the same database transaction as the page deletion (Tomasz Knapik)

	Seek to the beginning of image files when uploading, to restore compatibility with django-storages Google Cloud and Azure backends (Mikalai Radchuk)

	Snippet chooser modal no longer fails on snippet models with UUID primary keys (Sævar Öfjörð Magnússon)

	Restored localisation in date/time pickers (David Moore, Thibaud Colas)

	Tag input field no longer treats ‘б’ on Russian keyboards as a comma (Michael Borisov)

	Disabled autocomplete dropdowns on date/time chooser fields (Janneke Janssen)

	Split up wagtail.admin.forms to make it less prone to circular imports (Matt Westcott)

	Disable linking to root page in rich text, making the page non-functional (Matt Westcott)

	Pages should be editable and save-able even if there are broken page or document links in rich text (Matt Westcott)

	Avoid redundant round-trips of JSON StreamField data on save, improving performance and preventing consistency issues on fixture loading (Andy Chosak, Matt Westcott)

	Users are not logged out when changing their own password through the Users area (Matt Westcott)

Upgrade considerations

wagtail.admin.forms reorganised

The wagtail.admin.forms module has been split up into submodules to make it less prone to producing circular imports, particularly when a custom user model is in use. The following (undocumented) definitions have now been moved to new locations:

	Definition

	New location

	LoginForm

	wagtail.admin.forms.auth

	PasswordResetForm

	wagtail.admin.forms.auth

	URLOrAbsolutePathValidator

	wagtail.admin.forms.choosers

	URLOrAbsolutePathField

	wagtail.admin.forms.choosers

	ExternalLinkChooserForm

	wagtail.admin.forms.choosers

	EmailLinkChooserForm

	wagtail.admin.forms.choosers

	CollectionViewRestrictionForm

	wagtail.admin.forms.collections

	CollectionForm

	wagtail.admin.forms.collections

	BaseCollectionMemberForm

	wagtail.admin.forms.collections

	BaseGroupCollectionMemberPermissionFormSet

	wagtail.admin.forms.collections

	collection_member_permission_formset_factory

	wagtail.admin.forms.collections

	CopyForm

	wagtail.admin.forms.pages

	PageViewRestrictionForm

	wagtail.admin.forms.pages

	SearchForm

	wagtail.admin.forms.search

	BaseViewRestrictionForm

	wagtail.admin.forms.view_restrictions

The following definitions remain in wagtail.admin.forms: FORM_FIELD_OVERRIDES, DIRECT_FORM_FIELD_OVERRIDES, formfield_for_dbfield, WagtailAdminModelFormMetaclass, WagtailAdminModelForm and WagtailAdminPageForm.

 Wagtail 2.2.2 release notes

Wagtail 2.2.2 release notes

	What’s new

What’s new

Bug fixes

	Seek to the beginning of image files when uploading, to restore compatibility with django-storages Google Cloud and Azure backends (Mikalai Radchuk)

	Respect next param on login (Loic Teixeira)

 Wagtail 2.2.1 release notes

Wagtail 2.2.1 release notes

	What’s new

What’s new

Bug fixes

	Pin Beautiful Soup to 4.6.0 due to further regressions in formatting empty elements (Matt Westcott)

	Prevent AppRegistryNotReady error when wagtail.contrib.sitemaps is in INSTALLED_APPS (Matt Westcott)

 Wagtail 2.2 release notes

Wagtail 2.2 release notes

	What’s new

	Upgrade considerations

What’s new

Faceted search

Wagtail search now includes support for facets, allowing you to display search result counts broken down by a particular field value. For further details, see Faceted search. This feature was developed by Karl Hobley.

Improved admin page search

The page search in the Wagtail admin now supports filtering by page type and ordering search results by title, creation date and status. This feature was developed by Karl Hobley.

Other features

	Added another valid AudioBoom oEmbed pattern (Bertrand Bordage)

	Added annotate_score support to PostgreSQL search backend (Bertrand Bordage)

	Pillow’s image optimisation is now applied when saving PNG images (Dmitry Vasilev)

	JS / CSS media files can now be associated with Draftail feature definitions (Matt Westcott)

	The {% slugurl %} template tag is now site-aware (Samir Shah)

	Added file_size field to documents (Karl Hobley)

	Added file_hash field to images (Karl Hobley)

	Update documentation (configuring Django for Wagtail) to contain all current settings options (Matt Westcott, LB (Ben Johnston))

	Added defer flag to PageQuerySet.specific (Karl Hobley)

	Snippets can now be deleted from the listing view (LB (Ben Johnston))

	Increased max length of redirect URL field to 255 (Michael Harrison)

	Added documentation for new JS/CSS media files association with Draftail feature definitions (Ed Henderson)

	Added accessible colour contrast guidelines to the style guide (Catherine Farman)

	Admin modal views no longer rely on Javascript eval(), for better CSP compliance (Matt Westcott)

	Update editor guide for embeds and documents in rich text (Kevin Howbrook)

	Improved performance of sitemap generation (Michael van Tellingen, Bertrand Bordage)

	Added an internal API for autocomplete (Karl Hobley)

Bug fixes

	Handle all exceptions from Image.get_file_size (Andrew Plummer)

	Fix display of breadcrumbs in ModelAdmin (LB (Ben Johnston))

	Remove duplicate border radius of avatars (Benjamin Thurm)

	Site.get_site_root_paths() preferring other sites over the default when some sites share the same root_page (Andy Babic)

	Pages with missing model definitions no longer crash the API (Abdulmalik Abdulwahab)

	Rich text image chooser no longer skips format selection after a validation error (Matt Westcott)

	Null characters in URLs no longer crash the redirect middleware on PostgreSQL (Andrew Crewdson, Matt Westcott)

	Permission checks no longer prevent a non-live page from being unscheduled (Abdulmalik Abdulwahab)

	Copy-paste between Draftail editors now preserves all formatting/content (Thibaud Colas)

	Fix alignment of checkboxes and radio buttons on Firefox (Matt Westcott)

Upgrade considerations

JavaScript templates in modal workflows are deprecated

The wagtail.admin.modal_workflow module (used internally by Wagtail to handle modal popup interfaces such as the page chooser) has been updated to avoid returning JavaScript code as part of HTTP responses. User code that relies on this functionality can be updated as follows:

	Eliminate template tags from the .js template. Any dynamic data needed by the template can instead be passed in a dict to render_modal_workflow, as a keyword argument json_data; this data will then be available as the second parameter of the JavaScript function.

	At the point where you call the ModalWorkflow constructor, add an onload option - a dictionary of functions to be called on loading each step of the workflow. Move the code from the .js template into this dictionary. Then, on the call to render_modal_workflow, rather than passing the .js template name (which should now be replaced by None), pass a step item in the json_data dictionary to indicate the onload function to be called.

Additionally, if your code calls loadResponseText as part of a jQuery AJAX callback, this should now be passed all three arguments from the callback (the response data, status string and XMLHttpRequest object).

Page.get_sitemap_urls() now accepts an optional request keyword argument

The Page.get_sitemap_urls() method used by the wagtail.contrib.sitemaps module has been updated to receive an optional request keyword argument. If you have overridden this method in your page models, you will need to update the method signature to accept this argument (and pass it on when calling super, if applicable).

 Wagtail 2.1.3 release notes

Wagtail 2.1.3 release notes

	What’s new

What’s new

Bug fixes

	Pin Beautiful Soup to 4.6.0 due to further regressions in formatting empty elements (Matt Westcott)

 Wagtail 2.1.2 release notes

Wagtail 2.1.2 release notes

	What’s new

What’s new

Bug fixes

	Bundle the l18n package to avoid installation issues on systems with a non-Unicode locale (Matt Westcott)

	Mark Beautiful Soup 4.6.1 as incompatible due to bug in formatting empty elements (Matt Westcott)

 Wagtail 2.1.1 release notes

Wagtail 2.1.1 release notes

	What’s new

What’s new

Bug fixes

	Fix Site.get_site_root_paths() preferring other sites over the default when some sites share the same root_page (Andy Babic)

	Rich text image chooser no longer skips format selection after a validation error (Matt Westcott)

	Null characters in URLs no longer crash the redirect middleware on PostgreSQL (Matt Westcott)

 Wagtail 2.1 release notes

Wagtail 2.1 release notes

	What’s new

	Upgrade considerations

What’s new

New HelpPanel

A new panel type HelpPanel allows to easily add HTML within an edit form.
This new feature was developed by Kevin Chung.

Profile picture upload

Users can now upload profile pictures directly through the Account Settings menu, rather than using Gravatar. Gravatar is still used as a fallback if no profile picture has been uploaded directly; a new setting WAGTAIL_GRAVATAR_PROVIDER_URL has been added to specify an alternative provider, or disable the use of external avatars completely. This feature was developed by Daniel Chimeno, Pierre Geier and Matt Westcott.

API lookup by page path

The API now includes an endpoint for finding pages by path; see Finding pages by HTML path. This feature was developed by Karl Hobley.

User time zone setting

Users can now set their current time zone through the Account Settings menu, which will then be reflected in date / time fields throughout the admin (such as go-live / expiry dates). The list of available time zones can be configured via the WAGTAIL_USER_TIME_ZONES setting. This feature was developed by David Moore.

Elasticsearch 6 support

Wagtail now supports Elasticsearch 6. See Elasticsearch Backend for configuration details. This feature was developed by Karl Hobley.

Other features

	Persist tab hash in URL to allow direct navigation to tabs in the admin interface (Ben Weatherman)

	Animate the chevron icon when opening sub-menus in the admin (Carlo Ascani)

	Look through the target link and target page slug (in addition to the old slug) when searching for redirects in the admin (Michael Harrison)

	Remove support for IE6 to IE9 from project template (Samir Shah)

	Remove outdated X-UA-Compatible meta from admin template (Thibaud Colas)

	Add JavaScript source maps in production build for packaged Wagtail (Thibaud Colas)

	Removed assert statements from Wagtail API (Kim Chee Leong)

	Update jquery-datetimepicker dependency to make Wagtail more CSP-friendly (unsafe-eval) (Pomax)

	Added error notification when running the wagtail command on Python <3.4 (Matt Westcott)

	update_index management command now accepts a --chunk_size option to determine the number of items to load at once (Dave Bell)

	Added hook register_account_menu_item to add new account preference items (Michael van Tellingen)

	Added change email functionality from the account settings (Alejandro Garza, Alexs Mathilda)

	Add request parameter to edit handlers (Rajeev J Sebastian)

	ImageChooser now sets a default title based on filename (Coen van der Kamp)

	Added error handling to the Draftail editor (Thibaud Colas)

	Add new wagtail_icon template tag to facilitate making admin icons accessible (Sander Tuit)

	Set ALLOWED_HOSTS in the project template to allow any host in development (Tom Dyson)

	Expose reusable client-side code to build Draftail extensions (Thibaud Colas)

	Added WAGTAILFRONTENDCACHE_LANGUAGES setting to specify the languages whose URLs are to be purged when using i18n_patterns (PyMan Claudio Marinozzi)

	Added extra_footer_actions template blocks for customising the add/edit page views (Arthur Holzner)

Bug fixes

	Status button on ‘edit page’ now links to the correct URL when live and draft slug differ (LB (Ben Johnston))

	Image title text in the gallery and in the chooser now wraps for long filenames (LB (Ben Johnston), Luiz Boaretto)

	Move image editor action buttons to the bottom of the form on mobile (Julian Gallo)

	StreamField icons are now correctly sorted into groups on the ‘append’ menu (Tim Heap)

	Draftail now supports features specified via the WAGTAILADMIN_RICH_TEXT_EDITORS setting (Todd Dembrey)

	Password reset form no longer indicates whether the email is recognised, as per standard Django behaviour (Bertrand Bordage)

	UserAttributeSimilarityValidator is now correctly enforced on user creation / editing forms (Tim Heap)

	Focal area removal not working in IE11 and MS Edge (Thibaud Colas)

	Rewrite password change feedback message to be more user-friendly (Casper Timmers)

	Correct dropdown arrow styling in Firefox, IE11 (Janneke Janssen, Alexs Mathilda)

	Password reset no indicates specific validation errors on certain password restrictions (Lucas Moeskops)

	Confirmation page on page deletion now respects custom get_admin_display_title methods (Kim Chee Leong)

	Adding external link with selected text now includes text in link chooser (Tony Yates, Thibaud Colas, Alexs Mathilda)

	Editing setting object with no site configured no longer crashes (Harm Zeinstra)

	Creating a new object with inlines while mandatory fields are empty no longer crashes (Bertrand Bordage)

	Localization of image and apps verbose names

	Draftail editor no longer crashes after deleting image/embed using DEL key (Thibaud Colas)

	Breadcrumb navigation now respects custom get_admin_display_title methods (Arthur Holzner, Wietze Helmantel, Matt Westcott)

	Inconsistent order of heading features when adding h1, h5 or h6 as default feature for Hallo RichText editor (Loic Teixeira)

	Add invalid password reset link error message (Coen van der Kamp)

	Bypass select/prefetch related optimisation on update_index for ParentalManyToManyField to fix crash (Tim Kamanin)

	‘Add user’ is now rendered as a button due to the use of quotes within translations (Benoît Vogel)

	Menu icon no longer overlaps with title in Modeladmin on mobile (Coen van der Kamp)

	Background color overflow within the Wagtail documentation (Sergey Fedoseev)

	Page count on homepage summary panel now takes account of user permissions (Andy Chosak)

	Explorer view now prevents navigating outside of the common ancestor of the user’s permissions (Andy Chosak)

	Generate URL for the current site when multiple sites share the same root page (Codie Roelf)

	Restored ability to use non-model fields with FieldPanel (Matt Westcott, LB (Ben Johnston))

	Stop revision comparison view from crashing when non-model FieldPanels are in use (LB (Ben Johnston))

	Ordering in the page explorer now respects custom get_admin_display_title methods when sorting <100 pages (Matt Westcott)

	Use index-specific Elasticsearch endpoints for bulk insertion, for compatibility with providers that lock down the root endpoint (Karl Hobley)

	Fix usage URL on the document edit page (Jérôme Lebleu)

Upgrade considerations

Image format image_to_html method has been updated

The internal API for rich text image format objects (see Image Formats in the Rich Text Editor) has been updated; the Format.image_to_html method now receives the extra_attributes keyword argument as a dictionary of attributes, rather than a string. If you have defined any custom format objects that override this method, these will need to be updated.

 Wagtail 2.0.2 release notes

Wagtail 2.0.2 release notes

	What’s new

What’s new

Bug fixes

	Restored ability to use non-model fields with FieldPanel (Matt Westcott, LB (Ben Johnston))

	Fix usage URL on the document edit page (Jérôme Lebleu)

	Pin Beautiful Soup to 4.6.0 due to further regressions in formatting empty elements (Matt Westcott)

 Wagtail 2.0.1 release notes

Wagtail 2.0.1 release notes

	What’s new

What’s new

	Added error notification when running the wagtail command on Python <3.4 (Matt Westcott)

	Added error handling to the Draftail editor (Thibaud Colas)

Bug fixes

	Draftail now supports features specified via the WAGTAILADMIN_RICH_TEXT_EDITORS setting (Todd Dembrey)

	Password reset form no longer indicates whether the email is recognised, as per standard Django behaviour (Bertrand Bordage)

	UserAttributeSimilarityValidator is now correctly enforced on user creation / editing forms (Tim Heap)

	Editing setting object with no site configured no longer crashes (Harm Zeinstra)

	Creating a new object with inlines while mandatory fields are empty no longer crashes (Bertrand Bordage)

 Wagtail 2.0 release notes

Wagtail 2.0 release notes

	What’s new

	Upgrade considerations

What’s new

Added Django 2.0 support

Wagtail is now compatible with Django 2.0. Compatibility fixes were contributed by Matt Westcott, Karl Hobley, LB (Ben Johnston) and Mads Jensen.

New rich text editor

Wagtail’s rich text editor has now been replaced with Draftail [https://github.com/springload/draftail], a new editor based on Draft.js [https://draftjs.org/], fixing numerous bugs and providing an improved editing experience, better support for current browsers, and more consistent HTML output. This feature was developed by Thibaud Colas, Loïc Teixeira and Matt Westcott.

Reorganised modules

The modules that make up Wagtail have been renamed and reorganised, to avoid the repetition in names like wagtail.wagtailcore.models (originally an artefact of app naming limitations in Django 1.6) and to improve consistency. While this will require some up-front work to upgrade existing Wagtail sites, we believe that this will be a long-term improvement to the developer experience, improving readability of code and reducing errors. This change was implemented by Karl Hobley and Matt Westcott.

Scheduled page revisions

The behaviour of scheduled publishing has been revised so that pages are no longer unpublished at the point of setting a future go-live date, making it possible to schedule updates to an existing published page. This feature was developed by Patrick Woods.

Other features

	Moved Wagtail API v1 implementation (wagtail.contrib.api) to an external app [https://github.com/wagtail/wagtailapi_legacy] (Karl Hobley)

	The page chooser now searches all fields of a page, instead of just the title (Bertrand Bordage)

	Implement ordering by date in form submission view (LB (Ben Johnston))

	Elasticsearch scroll API is now used when fetching more than 100 search results (Karl Hobley)

	Added hidden field to the form builder (Ross Crawford-d’Heureuse)

	Usage count now shows on delete confirmation page when WAGTAIL_USAGE_COUNT_ENABLED is active (Kees Hink)

	Added usage count to snippets (Kees Hink)

	Moved usage count to the sidebar on the edit page (Kees Hink)

	Explorer menu now reflects customisations to the page listing made via the construct_explorer_page_queryset hook and ModelAdmin.exclude_from_explorer property (Tim Heap)

	“Choose another image” button changed to “Change image” to avoid ambiguity (Edd Baldry)

	Added hooks before_create_user, after_create_user, before_delete_user, after_delete_user, before_edit_user, after_edit_user (Jon Carmack)

	Added exclude_fields_in_copy property to Page to define fields that should not be included on page copy (LB (Ben Johnston))

	Improved error message on incorrect {% image %} tag syntax (LB (Ben Johnston))

	Optimized preview data storage (Bertrand Bordage)

	Added render_landing_page method to AbstractForm to be easily overridden and pass form_submission to landing page context (Stein Strindhaug)

	Added heading kwarg to InlinePanel to allow heading to be set independently of button label (Adrian Turjak)

	The value type returned from a StructBlock can now be customised. See Custom value class for StructBlock (LB (Ben Johnston))

	Added bgcolor image operation (Karl Hobley)

	Added WAGTAILADMIN_USER_LOGIN_FORM setting for overriding the admin login form (Mike Dingjan)

	Snippets now support custom primary keys (Sævar Öfjörð Magnússon)

	Upgraded jQuery to version 3.2.1 (Janneke Janssen)

	Update autoprefixer configuration to better match browser support targets (Janneke Janssen)

	Update React and related dependencies to latest versions (Janneke Janssen, Hugo van den Berg)

	Remove Hallo editor .richtext CSS class in favour of more explicit extension points (Thibaud Colas)

	Updated documentation styling (LB (Ben Johnston))

	Rich text fields now take feature lists into account when whitelisting HTML elements (Matt Westcott)

	FormPage lists and Form submission lists in admin now use class based views for easy overriding (Johan Arensman)

	Form submission csv exports now have the export date in the filename and can be customized (Johan Arensman)

	FormBuilder class now uses bound methods for field generation, adding custom fields is now easier and documented (LB (Ben Johnston))

	Added WAGTAILADMIN_NOTIFICATION_INCLUDE_SUPERUSERS setting to determine whether superusers are included in moderation email notifications (Bruno Alla)

	Added a basic Dockerfile to the project template (Tom Dyson)

	StreamField blocks now allow custom get_template methods for overriding templates in instances (Christopher Bledsoe)

	Simplified edit handler API (Florent Osmont, Bertrand Bordage)

	Made ‘add/change/delete collection’ permissions configurable from the group edit page (Matt Westcott)

	Expose React-related dependencies as global variables for extension in the admin interface (Thibaud Colas)

	Added helper functions for constructing form data for use with assertCanCreate. See Form data helpers (Tim Heap, Matt Westcott)

Bug fixes

	Do not remove stopwords when generating slugs from non-ASCII titles, to avoid issues with incorrect word boundaries (Sævar Öfjörð Magnússon)

	The PostgreSQL search backend now preserves ordering of the QuerySet when searching with order_by_relevance=False (Bertrand Bordage)

	Using modeladmin_register as a decorator no longer replaces the decorated class with None (Tim Heap)

	Fixed crash in XML sitemap generator when all pages on the site are private (Stein Strindhaug)

	The {% routablepageurl %} template tag no longer generates invalid URLs when the WAGTAIL_APPEND_SLASH setting was set to False (Venelin Stoykov)

	The “View live” button is no longer shown if the page doesn’t have a routable URL (Tim Heap)

	API listing views no longer fail when no site records are defined (Karl Hobley)

	Fixed rendering of border on dropdown arrow buttons on Chrome (Bertrand Bordage)

	Fixed incorrect z-index on userbar causing it to appear behind page content (Stein Strindhaug)

	Form submissions pagination no longer looses date filter when changing page (Bertrand Bordage)

	PostgreSQL search backend now removes duplicate page instances from the database (Bertrand Bordage)

	FormSubmissionsPanel now recognises custom form submission classes (LB (Ben Johnston))

	Prevent the footer and revisions link from unnecessarily collapsing on mobile (Jack Paine)

	Empty searches were activated when paginating through images and documents (LB (Ben Johnston))

	Summary numbers of pages, images and documents were not responsive when greater than 4 digits (Michael Palmer)

	Project template now has password validators enabled by default (Matt Westcott)

	Alignment options correctly removed from TableBlock context menu (LB (Ben Johnston))

	Fix support of ATOMIC_REBUILD for projects with Elasticsearch client >=1.7.0 (Mikalai Radchuk)

	Fixed error on Elasticsearch backend when passing a QuerySet as an __in filter (Karl Hobley, Matt Westcott)

	__isnull filters no longer fail on Elasticsearch 5 (Karl Hobley)

	Prevented intermittent failures on Postgres search backend when a field is defined as both a SearchField and a FilterField (Matt Westcott)

	Alt text of images in rich text is no longer truncated on double-quote characters (Matt Westcott)

	Ampersands in embed URLs within rich text are no longer double-escaped (Matt Westcott)

	Using RGBA images no longer crashes with Pillow >= 4.2.0 (Karl Hobley)

	Copying a page with PostgreSQL search enabled no longer crashes (Bertrand Bordage)

	Style of the page unlock button was broken (Bertrand Bordage)

	Admin search no longer floods browser history (Bertrand Bordage)

	Version comparison now handles custom primary keys on inline models correctly (LB (Ben Johnston))

	Fixed error when inserting chooser panels into FieldRowPanel (Florent Osmont, Bertrand Bordage)

	Reinstated missing error reporting on image upload (Matt Westcott)

	Only load Hallo CSS if Hallo is in use (Thibaud Colas)

	Prevent style leak of Wagtail panel icons in widgets using h2 elements (Thibaud Colas)

Upgrade considerations

Removed support for Python 2.7, Django 1.8 and Django 1.10

Python 2.7, Django 1.8 and Django 1.10 are no longer supported in this release. You are advised to upgrade your project to Python 3 and Django 1.11 before upgrading to Wagtail 2.0.

Added support for Django 2.0

Before upgrading to Django 2.0, you are advised to review the release notes [https://docs.djangoproject.com/en/stable/releases/2.0/], especially the backwards incompatible changes [https://docs.djangoproject.com/en/stable/releases/2.0/#backwards-incompatible-changes-in-2-0] and removed features [https://docs.djangoproject.com/en/stable/releases/2.0/#features-removed-in-2-0].

Wagtail module path updates

Many of the module paths within Wagtail have been reorganised to reduce duplication - for example, wagtail.wagtailcore.models is now wagtail.core.models. As a result, import lines and other references to Wagtail modules will need to be updated when you upgrade to Wagtail 2.0. A new command has been added to assist with this - from the root of your project’s code base:

$ wagtail updatemodulepaths --list # list the files to be changed without updating them
$ wagtail updatemodulepaths --diff # show the changes to be made, without updating files
$ wagtail updatemodulepaths # actually update the files

Or, to run from a different location:

$ wagtail updatemodulepaths /path/to/project --list
$ wagtail updatemodulepaths /path/to/project --diff
$ wagtail updatemodulepaths /path/to/project

For the full list of command line options, enter wagtail help updatemodulepaths.

You are advised to take a backup of your project codebase before running this command. The command will perform a search-and-replace over all *.py files for the affected module paths; while this should catch the vast majority of module references, it will not be able to fix instances that do not use the dotted path directly, such as from wagtail import wagtailcore.

The full list of modules to be renamed is as follows:

	Old name

	New name

	Notes

	wagtail.wagtailcore

	wagtail.core

	

	wagtail.wagtailadmin

	wagtail.admin

	

	wagtail.wagtaildocs

	wagtail.documents

	‘documents’ no longer abbreviated

	wagtail.wagtailembeds

	wagtail.embeds

	

	wagtail.wagtailimages

	wagtail.images

	

	wagtail.wagtailsearch

	wagtail.search

	

	wagtail.wagtailsites

	wagtail.sites

	

	wagtail.wagtailsnippets

	wagtail.snippets

	

	wagtail.wagtailusers

	wagtail.users

	

	wagtail.wagtailforms

	wagtail.contrib.forms

	Moved into ‘contrib’

	wagtail.wagtailredirects

	wagtail.contrib.redirects

	Moved into ‘contrib’

	wagtail.contrib.wagtailapi

	removed

	API v1, removed in this release

	wagtail.contrib.wagtailfrontendcache

	wagtail.contrib.frontend_cache

	Underscore added

	wagtail.contrib.wagtailroutablepage

	wagtail.contrib.routable_page

	Underscore added

	wagtail.contrib.wagtailsearchpromotions

	wagtail.contrib.search_promotions

	Underscore added

	wagtail.contrib.wagtailsitemaps

	wagtail.contrib.sitemaps

	

	wagtail.contrib.wagtailstyleguide

	wagtail.contrib.styleguide

	

Places these should be updated include:

	import lines

	Paths specified in settings, such as INSTALLED_APPS, MIDDLEWARE and WAGTAILSEARCH_BACKENDS

	Fields and blocks referenced within migrations, such as wagtail.wagtailcore.fields.StreamField and wagtail.wagtailcore.blocks.RichTextBlock

However, note that this only applies to dotted module paths beginning with wagtail.. App names that are not part of a dotted module path should be left unchanged - in this case, the wagtail prefix is still required to avoid clashing with other apps that might exist in the project with names such as admin or images. The following should be left unchanged:

	Foreign keys specifying a model as 'app_name.ModelName', e.g. models.ForeignKey('wagtailimages.Image',...)

	App labels used in database table names, content types or permissions

	Paths to templates and static files, e.g. when overriding admin templates with custom branding

	Template tag library names, e.g. {% load wagtailcore_tags %}

Hallo.js customisations are unavailable on the Draftail rich text editor

The Draftail rich text editor has a substantially different API from Hallo.js, including the use of a non-HTML format for its internal data representation; as a result, functionality added through Hallo.js plugins will be unavailable. If your project is dependent on Hallo.js-specific behaviour, you can revert to the original Hallo-based editor by adding the following to your settings:

WAGTAILADMIN_RICH_TEXT_EDITORS = {
 'default': {
 'WIDGET': 'wagtail.admin.rich_text.HalloRichTextArea'
 }
}

Data format for rich text fields in assertCanCreate tests has been updated

The assertCanCreate test method (see Testing your Wagtail site) requires data to be passed in the same format that the page edit form would submit. The Draftail rich text editor posts this data in a non-HTML format, and so any existing assertCanCreate tests involving rich text fields will fail when Draftail is in use:

self.assertCanCreate(root_page, ContentPage, {
 'title': 'About us',
 'body': '<p>Lorem ipsum dolor sit amet</p>', # will not work
})

Wagtail now provides a set of helper functions for constructing form data: see Form data helpers. The above assertion can now be rewritten as:

from wagtail.tests.utils.form_data import rich_text

self.assertCanCreate(root_page, ContentPage, {
 'title': 'About us',
 'body': rich_text('<p>Lorem ipsum dolor sit amet</p>'),
})

Removed support for Elasticsearch 1.x

Elasticsearch 1.x is no longer supported in this release. Please upgrade to a 2.x or 5.x release of Elasticsearch before upgrading to Wagtail 2.0.

Removed version 1 of the Wagtail API

Version 1 of the Wagtail API (wagtail.contrib.wagtailapi) has been removed from Wagtail.

If you’re using version 1, you will need to migrate to version 2. Please see
Wagtail API v2 Configuration Guide and Wagtail API v2 Usage Guide.

If migrating to version 2 is not an option right now (if you have API clients that you don’t
have direct control over, such as a mobile app), you can find the implementation of the
version 1 API in the new wagtailapi_legacy [https://github.com/wagtail/wagtailapi_legacy] repository.

This repository has been created to provide a place for the community to collaborate on supporting
legacy versions of the API until everyone has migrated to an officially supported version.

construct_whitelister_element_rules hook is deprecated

The construct_whitelister_element_rules hook, used to specify additional HTML elements to be permitted in rich text, is deprecated. The recommended way of whitelisting elements is now to use rich text features - see Whitelisting rich text elements. For example, a whitelist rule that was previously defined as:

from wagtail.core import hooks
from wagtail.core.whitelist import allow_without_attributes

@hooks.register('construct_whitelister_element_rules')
def whitelist_blockquote():
 return {
 'blockquote': allow_without_attributes,
 }

can be rewritten as:

from wagtail.admin.rich_text.converters.editor_html import WhitelistRule
from wagtail.core import hooks
from wagtail.core.whitelist import allow_without_attributes

@hooks.register('register_rich_text_features')
def blockquote_feature(features):

 # register a feature 'blockquote' which whitelists the <blockquote> element
 features.register_converter_rule('editorhtml', 'blockquote', [
 WhitelistRule('blockquote', allow_without_attributes),
])

 # add 'blockquote' to the default feature set
 features.default_features.append('blockquote')

Please note that the new Draftail rich text editor uses a different mechanism to process rich text content, and does not apply whitelist rules; they only take effect when the Hallo.js editor is in use.

wagtail.images.views.serve.generate_signature now returns a string

The generate_signature function in wagtail.images.views.serve, used to build URLs for the dynamic image serve view, now returns a string rather than a byte string. This ensures that any existing user code that builds up the final image URL with reverse will continue to work on Django 2.0 (which no longer allows byte strings to be passed to reverse). Any code that expects a byte string as the return value of generate_string - for example, calling decode() on the result - will need to be updated. (Apps that need to preserve compatibility with earlier versions of Wagtail can call django.utils.encoding.force_text instead of decode.)

Deprecated search view

Wagtail has always included a bundled view for frontend search. However, this view isn’t easy to customise so
defining this view per project is usually preferred. If you have used this bundled view (check for an import
from wagtail.wagtailsearch.urls in your project’s urls.py), you will need to replace this with your
own implementation.

See the search view in Wagtail demo for a guide: https://github.com/wagtail/wagtaildemo/blob/master/demo/views.py

New Hallo editor extension points

With the introduction of a new editor, we want to make sure existing editor plugins meant for Hallo only target
Hallo editors for extension.

	The existing .richtext CSS class is no longer applied to the Hallo editor’s DOM element.

	In JavaScript, use the [data-hallo-editor] attribute selector to target the editor, eg. var $editor = $('[data-hallo-editor]');.

	In CSS, use the .halloeditor class selector.

For example,

/* JS */
- var widget = $(elem).parent('.richtext').data('IKS-hallo');
+ var widget = $(elem).parent('[data-hallo-editor]').data('IKS-hallo');

[...]

/* Styles */
- .richtext {
+ .halloeditor {
 font-family: monospace;
}

 Wagtail 1.13.4 release notes

Wagtail 1.13.4 release notes

	What’s new

What’s new

Bug fixes

	Pin Beautiful Soup to 4.6.0 due to further regressions in formatting empty elements (Matt Westcott)

 Wagtail 1.13.3 release notes

Wagtail 1.13.3 release notes

	What’s new

What’s new

Bug fixes

	Pin django-taggit to <0.23 to restore Django 1.8 compatibility (Matt Westcott)

	Mark Beautiful Soup 4.6.1 as incompatible due to bug in formatting empty elements (Matt Westcott)

 Wagtail 1.13.2 release notes

Wagtail 1.13.2 release notes

	What’s new

What’s new

Bug fixes

	Fix support of ATOMIC_REBUILD for projects with Elasticsearch client >=1.7.0 (Mikalai Radchuk)

	Logging an indexing failure on an object with a non-ASCII representation no longer crashes on Python 2 (Aram Dulyan)

	Rich text image chooser no longer skips format selection after a validation error (Matt Westcott)

	Null characters in URLs no longer crash the redirect middleware on PostgreSQL (Matt Westcott)

 Wagtail 1.13.1 release notes

Wagtail 1.13.1 release notes

	What’s new

What’s new

Bug fixes

	API listing views no longer fail when no site records are defined (Karl Hobley)

	Fixed crash in XML sitemap generator when all pages on the site are private (Stein Strindhaug)

	Fixed incorrect z-index on userbar causing it to appear behind page content (Stein Strindhaug)

	Fixed error in Postgres search backend when searching specific fields of a specific() Page QuerySet (Bertrand Bordage, Matt Westcott)

	Fixed error on Elasticsearch backend when passing a QuerySet as an __in filter (Karl Hobley, Matt Westcott)

	__isnull filters no longer fail on Elasticsearch 5 (Karl Hobley)

	Prevented intermittent failures on Postgres search backend when a field is defined as both a SearchField and a FilterField (Matt Westcott)

 Wagtail 1.13 release notes

Wagtail 1.13 release notes

	What’s new

Wagtail 1.13 is designated a Long Term Support (LTS) release. Long Term Support releases will continue to receive maintenance updates as necessary to address security and data-loss related issues, up until the next LTS release (typically a period of 8 months). Please note that Wagtail 1.13 will be the last LTS release to support Python 2.

What’s new

New features

	Front-end cache invalidator now supports purging URLs as a batch - see Invalidating URLs (Karl Hobley)

	Custom document model is now documented (Emily Horsman)

	Use minified versions of CSS in the admin by adding minification to the front-end tooling (Vincent Audebert, Thibaud Colas)

	Wagtailforms serve view now passes request.FILES, for use in custom form handlers (LB (Ben Johnston))

	Documents and images are now given new filenames on re-uploading, to avoid old versions being kept in cache (Bertrand Bordage)

	Added custom 404 page for admin interface (Jack Paine)

	Breadcrumb navigation now uses globe icon to indicate tree root, rather than home icon (Matt Westcott)

	Wagtail now uses React 15.6.2 and above, released under the MIT license (Janneke Janssen)

	User search in the Wagtail admin UI now works across multiple fields (Will Giddens)

	Page.last_published_at is now a filterable field for search (Mikalai Radchuk)

	Page search results and usage listings now include navigation links (Matt Westcott)

Bug fixes

	“Open Link in New Tab” on a right arrow in page explorer should open page list (Emily Horsman)

	Using order_by_relevance=False when searching with PostgreSQL now works (Mitchel Cabuloy)

	Inline panel first and last sorting arrows correctly hidden in non-default tabs (Matt Westcott)

	WAGTAILAPI_LIMIT_MAX now accepts None to disable limiting (jcronyn)

	In PostgreSQL, new default ordering when ranking of objects is the same (Bertrand Bordage)

	Fixed overlapping header elements on form submissions view on mobile (Jack Paine)

	Fixed avatar position in footer on mobile (Jack Paine)

	Custom document models no longer require their own post-delete signal handler (Gordon Pendleton)

	Deletion of image / document files now only happens when database transaction has completed (Gordon Pendleton)

	Fixed Node build scripts to work on Windows (Mikalai Radchuk)

	Stop breadcrumb home icon from showing as ellipsis in Chrome 60 (Matt Westcott)

	Prevent USE_THOUSAND_SEPARATOR = True from breaking the image focal point chooser (Sævar Öfjörð Magnússon)

	Removed deprecated SessionAuthenticationMiddleware from project template (Samir Shah)

	Custom display page titles defined with get_admin_display_title are now shown in search results (Ben Sturmfels, Matt Westcott)

	Custom PageManagers now return the correct PageQuerySet subclass (Matt Westcott)

 Wagtail 1.12.6 release notes

Wagtail 1.12.6 release notes

	What’s new

What’s new

Bug fixes

	Pin Beautiful Soup to 4.6.0 due to further regressions in formatting empty elements (Matt Westcott)

 Wagtail 1.12.5 release notes

Wagtail 1.12.5 release notes

	What’s new

What’s new

Bug fixes

	Pin django-taggit to <0.23 to restore Django 1.8 compatibility (Matt Westcott)

	Mark Beautiful Soup 4.6.1 as incompatible due to bug in formatting empty elements (Matt Westcott)

 Wagtail 1.12.4 release notes

Wagtail 1.12.4 release notes

	What’s new

What’s new

Bug fixes

	Fix support of ATOMIC_REBUILD for projects with Elasticsearch client >=1.7.0 (Mikalai Radchuk)

	Logging an indexing failure on an object with a non-ASCII representation no longer crashes on Python 2 (Aram Dulyan)

	Rich text image chooser no longer skips format selection after a validation error (Matt Westcott)

	Null characters in URLs no longer crash the redirect middleware on PostgreSQL (Andrew Crewdson, Matt Westcott)

 Wagtail 1.12.3 release notes

Wagtail 1.12.3 release notes

	What’s new

What’s new

Bug fixes

	API listing views no longer fail when no site records are defined (Karl Hobley)

	Pinned Django REST Framework to <3.7 to restore Django 1.8 compatibility (Matt Westcott)

	Fixed crash in XML sitemap generator when all pages on the site are private (Stein Strindhaug)

	Fixed error in Postgres search backend when searching specific fields of a specific() Page QuerySet (Bertrand Bordage, Matt Westcott)

	Fixed error on Elasticsearch backend when passing a QuerySet as an __in filter (Karl Hobley, Matt Westcott)

	__isnull filters no longer fail on Elasticsearch 5 (Karl Hobley)

	Prevented intermittent failures on Postgres search backend when a field is defined as both a SearchField and a FilterField (Matt Westcott)

 Wagtail 1.12.2 release notes

Wagtail 1.12.2 release notes

	What’s new

What’s new

Bug fixes

	Migration for addition of Page.draft_title field is now reversible (Venelin Stoykov)

	Fixed failure on application startup when ManifestStaticFilesStorage is in use and collectstatic has not yet been run (Matt Westcott)

	Fixed handling of Vimeo and other oEmbed providers with a format parameter in the endpoint URL (Mitchel Cabuloy)

	Fixed regression in rendering save button in wagtail.contrib.settings edit view (Matt Westcott)

 Wagtail 1.12.1 release notes

Wagtail 1.12.1 release notes

	What’s new

What’s new

Bug fixes

	Prevent home page draft title from displaying as blank (Mikalai Radchuk, Matt Westcott)

	Fix regression on styling of preview button with more than one preview mode (Jack Paine)

	Enabled translations within date-time chooser widget (Lucas Moeskops)

 Wagtail 1.12 release notes

Wagtail 1.12 release notes

	What’s new

	Upgrade considerations

Wagtail 1.12 is designated a Long Term Support (LTS) release. Long Term Support releases will continue to receive maintenance updates as necessary to address security and data-loss related issues, up until the next LTS release (typically a period of 8 months).

What’s new

Configurable rich text features

The feature set provided by the rich text editor can now be configured on a per-field basis, by passing a features keyword argument; for example, a field can be configured to allow bold / italic formatting and links, but not headings or embedded images or media. For further information, see Limiting features in a rich text field. This feature was developed by Matt Westcott.

Improved embed configuration

New configuration options for embedded media have been added, to give greater control over how media URLs are converted to embeds, and to make it possible to specify additional media providers beyond the ones built in to Wagtail. For further information, see Embedded content. This feature was developed by Karl Hobley.

Other features

	The admin interface now displays a title of the latest draft (Mikalai Radchuk)

	RoutablePageMixin now has a default “index” route (Andreas Nüßlein, Matt Westcott)

	Added multi-select form field to the form builder (dwasyl)

	Improved performance of sitemap generation (Levi Adler)

	StreamField now respects the blank setting; StreamBlock accepts a required setting (Loic Teixeira)

	StreamBlock now accepts min_num, max_num and block_counts settings to control the minimum and maximum numbers of blocks (Edwar Baron, Matt Westcott)

	Users can no longer remove their own active / superuser flags through Settings -> Users (Stein Strindhaug, Huub Bouma)

	The process_form_submission method of form pages now return the created form submission object (Christine Ho)

	Added WAGTAILUSERS_PASSWORD_ENABLED and WAGTAILUSERS_PASSWORD_REQUIRED settings to permit creating users with no Django-side passwords, to support external authentication setups (Matt Westcott)

	Added help text parameter to DecimalBlock and RegexBlock (Tomasz Knapik)

	Optimised caudal oscillation parameters on logo (Jack Paine)

Bug fixes

	FieldBlocks in StreamField now call the field’s prepare_value method (Tim Heap)

	Initial disabled state of InlinePanel add button is now set correctly on non-default tabs (Matthew Downey)

	Redirects with unicode characters now work (Rich Brennan)

	Prevent explorer view from crashing when page model definitions are missing, allowing the offending pages to be deleted (Matt Westcott)

	Hide the userbar from printed page representation (Eugene Morozov)

	Prevent the page editor footer content from collapsing into two lines unnecessarily (Jack Paine)

	StructBlock values no longer render HTML templates as their str representation, to prevent infinite loops in debugging / logging tools (Matt Westcott)

	Removed deprecated jQuery load call from TableBlock initialisation (Jack Paine)

	Position of options in mobile nav-menu (Jack Paine)

	Center page editor footer regardless of screen width (Jack Paine)

	Change the design of the navbar toggle icon so that it no longer obstructs page headers (Jack Paine)

	Document add/edit forms no longer render container elements for hidden fields (Jeffrey Chau)

Upgrade considerations

StreamField now defaults to blank=False

StreamField now respects the blank field setting; when this is false, at least one block must be supplied for the field to pass validation. To match the behaviour of other model fields, blank defaults to False; if you wish to allow a StreamField to be left empty, you must now add blank=True to the field.

When passing an explicit StreamBlock as the top-level block of a StreamField definition, note that the StreamField’s blank keyword argument always takes precedence over the block’s required property, including when it is left as the default value of blank=False. Consequently, setting required=False on a top-level StreamBlock has no effect.

Old configuration settings for embeds are deprecated

The configuration settings WAGTAILEMBEDS_EMBED_FINDER and WAGTAILEMBEDS_EMBEDLY_KEY have been deprecated in favour of the new WAGTAILEMBEDS_FINDERS setting. Please see Configuring embed “finders” for the new configuration to use.

Registering custom hallo.js plugins directly is deprecated

The ability to enable / disable hallo.js plugins by calling registerHalloPlugin or modifying the halloPlugins list has been deprecated, and will be removed in Wagtail 1.14. The recommended way of customising the hallo.js editor is now through rich text features. For details of how to define a hallo.js plugin as a rich text feature, see Extending the Hallo Editor.

Custom get_admin_display_title methods should use draft_title

This release introduces a new draft_title field on page models, so that page titles as used across the admin interface will correctly reflect any changes that exist in draft. If any of your page models override the get_admin_display_title method, to customise the display of page titles in the admin, it is recommended that you now update these to base their output on draft_title rather than title. Alternatively, to preserve backwards compatibility, you can invoke super on the method, for example:

def get_admin_display_title(self):
 return "%(title)s (%(lang)s)" % {
 'title': super(TranslatablePage, self).get_admin_display_title(),
 'lang': self.language_code,
 }

Fixtures for loading pages should include draft_title

In most situations, the new draft_title field on page models will automatically be populated from the page title. However, this is not the case for pages that are created from fixtures. Projects that use fixtures to load initial data should therefore ensure that a draft_title field is specified.

RoutablePageMixin now has a default index route

If you’ve used RoutablePageMixin on a Page model, you may have had to manually define an index route to serve the page at its main URL (r'^$') so it behaves like a normal page. Wagtail now defines a default index route so this is no longer required.

 Wagtail 1.11.1 release notes

Wagtail 1.11.1 release notes

	What’s new

What’s new

Bug fixes

	Custom display page titles defined with get_admin_display_title are now shown within the page explorer menu (Matt Westcott, Janneke Janssen)

 Wagtail 1.11 release notes

Wagtail 1.11 release notes

	What’s new

	Upgrade considerations

What’s new

Explorer menu built with the admin API and React

After more than a year of work, the new explorer menu has finally landed! It comes with the following improvements:

	View all pages - not just the ones with child pages.

	Better performance, no matter the number of pages or levels in the hierarchy.

	Navigate the menu via keyboard.

	View Draft pages, and go to page editing, directly from the menu.

Beyond features, the explorer is built with the new admin API and React components.
This will facilitate further evolutions to make it even faster and user-friendly.
This work is the product of 4 Wagtail sprints, and the efforts of 16 people, listed here by order of first involvement:

	Karl Hobley (Cape town sprint, admin API)

	Josh Barr (Cape town sprint, prototype UI)

	Thibaud Colas (Ede sprint, Reykjavík sprint)

	Janneke Janssen (Ede sprint, Reykjavík sprint, Wagtail Space sprint)

	Rob Moorman (Ede sprint, eslint-config-wagtail, ES6+React+Redux styleguide)

	Maurice Bartnig (Ede sprint, i18n and bug fixes)

	Jonny Scholes (code review)

	Matt Westcott (Reykjavík sprint, refactorings)

	Sævar Öfjörð Magnússon (Reykjavík sprint)

	Eirikur Ingi Magnusson (Reykjavík sprint)

	Harris Lapiroff (Reykjavík sprint, tab-accessible navigation)

	Hugo van den Berg (testing, Wagtail Space sprint)

	Olly Willans (UI, UX, Wagtail Space sprint)

	Andy Babic (UI, UX)

	Ben Enright (UI, UX)

	Bertrand Bordage (testing, documentation)

Privacy settings on documents

Privacy settings can now be configured on collections, to restrict access to documents either by shared password or by user account. See: Private pages.

This feature was developed by Ulrich Wagner and Matt Westcott. Thank you to Wharton Research Data Services [https://www.WhartonWRDS.com/] of The Wharton School [https://www.wharton.upenn.edu] for sponsoring this feature.

Other features

	Optimised page URL generation by caching site paths in the request scope (Tobias McNulty, Matt Westcott)

	The current live version of a page is now tracked on the revision listing view (Matheus Bratfisch)

	Each block created in a StreamField is now assigned a globally unique identifier (Matt Westcott)

	Mixcloud oEmbed pattern has been updated (Alice Rose)

	Added last_published_at field to the Page model (Matt Westcott)

	Added show_in_menus_default flag on page models, to allow “show in menus” to be checked by default (LB (Ben Johnston))

	“Copy page” form now validates against copying to a destination where the user does not have permission (Henk-Jan van Hasselaar)

	Allows reverse relations in RelatedFields for elasticsearch & PostgreSQL search backends (Lucas Moeskops, Bertrand Bordage)

	Added oEmbed support for Facebook (Mikalai Radchuk)

	Added oEmbed support for Tumblr (Mikalai Radchuk)

Bug fixes

	Unauthenticated AJAX requests to admin views now return 403 rather than redirecting to the login page (Karl Hobley)

	TableBlock options afterChange, afterCreateCol, afterCreateRow, afterRemoveCol, afterRemoveRow and contextMenu can now be overridden (Loic Teixeira)

	The lastmod field returned by wagtailsitemaps now shows the last published date rather than the date of the last draft edit (Matt Westcott)

	Document chooser upload form no longer renders container elements for hidden fields (Jeffrey Chau)

	Prevented exception when visiting a preview URL without initiating the preview (Paul Kamp)

Upgrade considerations

Browser requirements for the new explorer menu

The new explorer menu does not support IE8, IE9, and IE10. The fallback experience is a link pointing to the explorer pages.

Caching of site-level URL information throughout the request cycle

The get_url_parts and relative_url methods on Page now accept an optional request keyword argument.
Additionally, two new methods have been added, get_url (analogous to the url property) and get_full_url
(analogous to the full_url) property. Whenever possible, these methods should be used instead of the property
versions, and the request passed to each method. For example:

page_url = my_page.url

would become:

page_url = my_page.get_url(request=request)

This enables caching of underlying site-level URL information throughout the request cycle, thereby significantly
reducing the number of cache or SQL queries your site will generate for a given page load. A common use case for these
methods is any custom template tag your project may include for generating navigation menus. For more information,
please refer to Page URLs.

Furthermore, if you have overridden get_url_parts or relative_url on any of your page models, you will need to
update the method signature to support this keyword argument; most likely, this will involve changing the line:

def get_url_parts(self):

to:

def get_url_parts(self, *args, **kwargs):

and passing those through at the point where you are calling get_url_parts on super (if applicable).

See also: wagtail.core.models.Page.get_url_parts(), wagtail.core.models.Page.get_url(),
wagtail.core.models.Page.get_full_url(), and wagtail.core.models.Page.relative_url()

“Password required” template for documents

This release adds the ability to password-protect documents as well as pages. The template used for the “password required” form is distinct from the one used for pages; if you have previously overridden the default template through the PASSWORD_REQUIRED_TEMPLATE setting, you may wish to provide a corresponding template for documents through the setting DOCUMENT_PASSWORD_REQUIRED_TEMPLATE. See: Private pages

Elasticsearch 5.4 is incompatible with ATOMIC_REBUILD

While not specific to Wagtail 1.11, users of Elasticsearch should be aware that the ATOMIC_REBUILD option is not compatible with Elasticsearch 5.4.x due to a bug in the handling of aliases [https://github.com/elastic/elasticsearch/issues/24644]. If you wish to use this feature, please use Elasticsearch 5.3.x or 5.5.x (when available).

 Wagtail 1.10.1 release notes

Wagtail 1.10.1 release notes

	What’s changed

What’s changed

Bug fixes

	Fix admin page preview that was broken 24 hours after previewing a page (Martin Hill)

	Removed territory-specific translations for Spanish, Polish, Swedish, Russian and Chinese (Taiwan) that block more complete translations from being used (Matt Westcott)

 Wagtail 1.10 release notes

Wagtail 1.10 release notes

	What’s new

	Upgrade considerations

What’s new

PostgreSQL search engine

A new search engine has been added to Wagtail which uses PostgreSQL’s built-in
full-text search functionality. This means that if you use PostgreSQL to manage
your database, you can now get a good quality search engine without needing
to install Elasticsearch.

To get started, see PostgreSQL search engine.

This feature was developed at the Arnhem sprint by Bertrand Bordage, Jaap Roes,
Arne de Laat and Ramon de Jezus.

Django 1.11 and Python 3.6 support

Wagtail is now compatible with Django 1.11 and Python 3.6. Compatibility fixes were contributed by Tim Graham, Matt Westcott, Mikalai Radchuk and Bertrand Bordage.

User language preference

Users can now set their preferred language for the Wagtail admin interface under Account Settings → Language Preferences. The list of available languages can be configured via the WAGTAILADMIN_PERMITTED_LANGUAGES setting. This feature was developed by Daniel Chimeno.

New admin preview

Previewing pages in Wagtail admin interface was rewritten
to make it more robust. In previous versions, preview was broken in several
scenarios so users often ended up on a blank page with an infinite spinner.

An additional setting was created: WAGTAIL_AUTO_UPDATE_PREVIEW.
It allows users to see changes done in the editor by refreshing the preview tab
without having to click again on the preview button.

This was developed by Bertrand Bordage.

Other features

	Use minified versions of jQuery and jQuery UI in the admin. Total savings without compression 371 KB (Tom Dyson)

	Hooks can now specify the order in which they are run (Gagaro)

	Added a submit_buttons block to login template (Gagaro)

	Added construct_image_chooser_queryset, construct_document_chooser_queryset and construct_page_chooser_queryset hooks (Gagaro)

	The homepage created in the project template is now titled “Home” rather than “Homepage” (Karl Hobley)

	Signal receivers for custom Image and Rendition models are connected automatically (Mike Dingjan)

	PageChooserBlock can now accept a list/tuple of page models as target_model (Mikalai Radchuk)

	Styling tweaks for the ModelAdmin’s IndexView to be more inline with the Wagtail styleguide (Andy Babic)

	Added .nvmrc to the project root for Node versioning support (Janneke Janssen)

	Added form_fields_exclude property to ModelAdmin views (Matheus Bratfisch)

	User creation / edit form now enforces password validators set in AUTH_PASSWORD_VALIDATORS (Bertrand Bordage)

	Added support for displaying non_field_errors when validation fails in the page editor (Matt Westcott)

	Added WAGTAILADMIN_RECENT_EDITS_LIMIT setting to to define the number of your most recent edits on the dashboard (Maarten Kling)

	Added link to the full Elasticsearch setup documentation from the Performance page (Matt Westcott)

	Tag input fields now accept spaces in tags by default, and can be overridden with the TAG_SPACES_ALLOWED setting (Kees Hink, Alex Gleason)

	Page chooser widgets now display the required page type where relevant (Christine Ho)

	Site root pages are now indicated with a globe icon in the explorer listing (Nick Smith, Huub Bouma)

	Draft page view is now restricted to users with edit / publish permission over the page (Kees Hink)

	Added the option to delete a previously saved focal point on a image (Maarten Kling)

	Page explorer menu item, search and summary panel are now hidden for users with no page permissions (Tim Heap)

	Added support for custom date and datetime formats in input fields (Bojan Mihelac)

	Added support for custom Django REST framework serialiser fields in Page.api_fields using a new APIField class (Karl Hobley)

	Added classname argument to StreamFieldPanel (Christine Ho)

	Added group keyword argument to StreamField blocks for grouping related blocks together in the block menu (Andreas Nüßlein)

	Update the sitemap generator to use the Django sitemap module (Michael van Tellingen, Mike Dingjan)

Bug fixes

	Marked ‘Date from’ / ‘Date to’ strings in wagtailforms for translation (Vorlif)

	“File” field label on image edit form is now translated (Stein Strindhaug)

	Unreliable preview is now reliable by always opening in a new window (Kjartan Sverrisson)

	Fixed placement of {{ block.super }} in snippets/type_index.html (LB (Ben Johnston))

	Optimised database queries on group edit page (Ashia Zawaduk)

	Choosing a popular search term for promoted search results now works correctly after pagination (Janneke Janssen)

	IDs used in tabbed interfaces are now namespaced to avoid collisions with other page elements (Janneke Janssen)

	Page title not displaying page name when moving a page (Trent Holliday)

	The ModelAdmin module can now work without the wagtailimages and wagtaildocs apps installed (Andy Babic)

	Cloudflare error handling now handles non-string error responses correctly (hdnpl)

	Search indexing now uses a defined query ordering to prevent objects from being skipped (Christian Peters)

	Ensure that number localisation is not applied to object IDs within admin templates (Tom Hendrikx)

	Paginating with a search present was always returning the 1st page in Internet Explorer 10 & 11 (Ralph Jacobs)

	RoutablePageMixin and wagtailforms previews now set the request.is_preview flag (Wietze Helmantel)

	The save and preview buttons in the page editor are now mobile-friendly (Maarten Kling)

	Page links within rich text now respect custom URLs defined on specific page models (Gary Krige, Huub Bouma)

	Default avatar no longer visible when using a transparent gravatar image (Thijs Kramer)

	Scrolling within the datetime picker is now usable again for touchpads (Ralph Jacobs)

	List-based fields within form builder form submissions are now displayed as comma-separated strings rather than as Python lists (Christine Ho, Matt Westcott)

	The page type usage listing now have a translatable page title (Ramon de Jezus)

	Styles for submission filtering form now have a consistent height. (Thijs Kramer)

	Slicing a search result set no longer loses the annotation added by annotate_score (Karl Hobley)

	String-based primary keys are now escaped correctly in ModelAdmin URLs (Andreas Nüßlein)

	Empty search in the API now works (Morgan Aubert)

	RichTextBlock toolbar now correctly positioned within StructBlock (Janneke Janssen)

	Fixed display of ManyToMany fields and False values on the ModelAdmin inspect view (Andy Babic)

	Prevent pages from being recursively copied into themselves (Matheus Bratfisch)

	Specifying the full file name in documents URL is mandatory (Morgan Aubert)

	Reordering inline forms now works correctly when moving past a deleted form (Janneke Janssen)

	Removed erroneous |safe filter from search results template in project template (Karl Hobley)

Upgrade considerations

Django 1.9 and Python 3.3 support dropped

Support for Django 1.9 and Python 3.3 has been dropped in this release; please upgrade from these before upgrading Wagtail. Note that the Django 1.8 release series is still supported, as a Long Term Support release.

Dropped support for generating static sites using django-medusa

Django-medusa is no longer maintained, and is incompatible with Django 1.8 and above. An alternative module based on the django-bakery package is available as a third-party contribution: https://github.com/moorinteractive/wagtail-bakery.

Signals on custom Image and Rendition models connected automatically

Projects using custom image models no longer need to set up signal receivers to handle deletion of image files and image feature detection, as these are now handled automatically by Wagtail. The following lines of code should be removed:

Delete the source image file when an image is deleted
@receiver(post_delete, sender=CustomImage)
def image_delete(sender, instance, **kwargs):
 instance.file.delete(False)

Delete the rendition image file when a rendition is deleted
@receiver(post_delete, sender=CustomRendition)
def rendition_delete(sender, instance, **kwargs):
 instance.file.delete(False)

Perform image feature detection (if enabled)
@receiver(pre_save, sender=CustomImage)
def image_feature_detection(sender, instance, **kwargs):
 if not instance.has_focal_point():
 instance.set_focal_point(instance.get_suggested_focal_point())

Adding / editing users through Wagtail admin no longer sets is_staff flag

Previously, the is_staff flag (which grants access to the Django admin interface) was automatically set for superusers, and reset for other users, when creating and updating users through the Wagtail admin. This behaviour has now been removed, since Wagtail is designed to work independently of the Django admin. If you need to reinstate the old behaviour, you can set up a pre_save signal handler [https://docs.djangoproject.com/en/stable/ref/signals/#django.db.models.signals.pre_save] on the User model to set the flag appropriately.

Specifying the full file name in documents URL is mandatory

In previous releases, it was possible to download a document using
the primary key and a fraction of its file name, or even without file name.
You could get the same document at the addresses
/documents/1/your-file-name.pdf, /documents/1/you & /documents/1/.

This feature was supposed to allow shorter URLs but was not used in Wagtail.
For security reasons, we removed it, so only the full URL works:
/documents/1/your-file-name.pdf

If any of your applications relied on the previous behaviour, you will have to
rewrite it to take this into account.

 Wagtail 1.9.1 release notes

Wagtail 1.9.1 release notes

	What’s changed

What’s changed

Bug fixes

	Removed erroneous |safe filter from search results template in project template (Karl Hobley)

	Prevent pages from being recursively copied into themselves (Matheus Bratfisch)

 Wagtail 1.9 release notes

Wagtail 1.9 release notes

	What’s new

	Upgrade considerations

What’s new

Revision comparisons

[image: ../_images/releasenotes_1_9_revisioncomparison.png]
Wagtail now provides the ability to view differences between revisions of a page, from the revisions listing page and when reviewing a page in moderation. This feature was developed by Karl Hobley, Janneke Janssen and Matt Westcott. Thank you to Blackstone Chambers for sponsoring this feature.

Many-to-many relations on page models

[image: ../_images/releasenotes_1_9_m2m.png]
Wagtail now supports a new field type ParentalManyToManyField that can be used to set up many-to-many relations on pages. For details, see the Categories section of the tutorial. This feature was developed by Thejaswi Puthraya and Matt Westcott.

Bulk-deletion of form submissions

Form builder form submissions can now be deleted in bulk from the form submissions index page. This feature was sponsored by St John’s College, Oxford and developed by Karl Hobley.

Accessing parent context from StreamField block get_context methods

The get_context method on StreamField blocks now receives a parent_context keyword argument, consisting of the dict of variables passed in from the calling template. For example, this makes it possible to perform pagination logic within get_context, retrieving the current page number from parent_context['request'].GET. See get_context on StreamField blocks. This feature was developed by Mikael Svensson and Peter Baumgartner.

Welcome message customisation for multi-tenanted installations

The welcome message on the admin dashboard has been updated to be more suitable for multi-tenanted installations. Users whose page permissions lie within a single site will now see that site name in the welcome message, rather than the installation-wide WAGTAIL_SITE_NAME. As before, this message can be customised, and additional template variables have been provided for this purpose - see Custom branding. This feature was developed by Jeffrey Chau.

Other features

	Changed text of “Draft” and “Live” buttons to “View draft” and “View live” (Dan Braghis)

	Added get_api_representation method to streamfield blocks allowing the JSON representation in the API to be customised (Marco Fucci)

	Added before_copy_page and after_copy_page hooks (Matheus Bratfisch)

	View live / draft links in the admin now consistently open in a new window (Marco Fucci)

	ChoiceBlock now omits the blank option if the block is required and has a default value (Andreas Nüßlein)

	The add_subpage view now maintains a next URL parameter to specify where to redirect to after completing page creation (Robert Rollins)

	The wagtailforms module now allows to define custom form submission model, add custom data to CSV export and some other customisations. See Form builder customisation (Mikalai Radchuk)

	The Webpack configuration is now in a subfolder to declutter the project root, and uses environment-specific configurations for smaller bundles in production and easier debugging in development (Janneke Janssen, Thibaud Colas)

	Added page titles to title text on action buttons in the explorer, for improved accessibility (Matt Westcott)

Bug fixes

	Help text for StreamField is now visible and does not cover block controls (Stein Strindhaug)

	“X minutes ago” timestamps are now marked for translation (Janneke Janssen, Matt Westcott)

	Avoid indexing unsaved field content on save(update_fields=[…]) operations (Matt Westcott)

	Corrected ordering of arguments passed to ModelAdmin get_extra_class_names_for_field_col / get_extra_attrs_for_field_col methods (Andy Babic)

	pageurl / slugurl tags now function when request.site is not available (Tobias McNulty, Matt Westcott)

Upgrade considerations

django-modelcluster and django-taggit dependencies updated

Wagtail now requires version 3.0 or later of django-modelcluster and version 0.20 or later of django-taggit; earlier versions are unsupported. In normal circumstances these packages will be upgraded automatically when upgrading Wagtail; however, if your Wagtail project has a requirements file that explicitly specifies an older version, this will need to be updated.

get_context methods on StreamField blocks need updating

Previously, get_context methods on StreamField blocks returned a dict of variables which would be merged into the calling template’s context before rendering the block template. get_context methods now receive a parent_context dict, and are responsible for returning the final context dictionary with any new variables merged into it. The old calling convention is now deprecated, and will be phased out in Wagtail 1.11.

In most cases, the method will be calling get_context on the superclass, and can be updated by passing the new parent_context keyword argument to it:

class MyBlock(Block):

 def get_context(self, value):
 context = super(MyBlock, self).get_context(value)
 ...
 return context

becomes:

class MyBlock(Block):

 def get_context(self, value, parent_context=None):
 context = super(MyBlock, self).get_context(value, parent_context=parent_context)
 ...
 return context

Note that get_context methods on page models are unaffected by this change.

 Wagtail 1.8.2 release notes

Wagtail 1.8.2 release notes

	What’s changed

What’s changed

Bug fixes

	Removed erroneous |safe filter from search results template in project template (Karl Hobley)

	Avoid indexing unsaved field content on save(update_fields=[...]) operations (Matt Westcott)

	Prevent pages from being recursively copied into themselves (Matheus Bratfisch)

 Wagtail 1.8.1 release notes

Wagtail 1.8.1 release notes

	What’s changed

What’s changed

Bug fixes

	Reduced Rendition.focal_point_key field length to prevent migration failure when upgrading to Wagtail 1.8 on MySQL with utf8 character encoding (Andy Chosak, Matt Westcott)

 Wagtail 1.8 release notes

Wagtail 1.8 release notes

	What’s new

	Upgrade considerations

Wagtail 1.8 is designated a Long Term Support (LTS) release. Long Term Support releases will continue to receive maintenance updates as necessary to address security and data-loss related issues, up until the next LTS release (typically a period of 8 months).

What’s new

New page privacy options

[image: ../_images/releasenotes_1_8_pageprivacy.png]
Access to pages can now be restricted based on user accounts and group membership, rather than just through a shared password. This makes it possible to set up intranet-style sites via the admin, with no additional coding. This feature was developed by Shawn Makinson, Tom Miller, Luca Perico and Matt Westcott.

See: Private pages

Restrictions on bulk-deletion of pages

Previously, any user with edit permission over a page and its descendants was able to delete them all as a single action, which led to the risk of accidental deletions. To guard against this, the permission rules have been revised so that a user with basic permissions can only delete pages that have no children; in order to delete a whole subtree, they must individually delete each child page first. A new “bulk delete” permission type has been added which allows a user to delete pages with children, as before; superusers receive this permission implicitly, and so there is no change of behaviour for them.

See: Permissions

This feature was developed by Matt Westcott.

Elasticsearch 5 support

Wagtail now supports Elasticsearch 5. See Elasticsearch Backend for configuration details. This feature was developed by Karl Hobley.

Permission-limited admin breadcrumb

Breadcrumb links within the admin are now limited to the portion of the page tree that covers all pages the user has permission over. As with the changes to the explorer sidebar menu in Wagtail 1.6, this is a step towards supporting full multi-tenancy (where multiple sites on the same Wagtail installation can be fully isolated from each other through permission configuration). This feature was developed by Jeffrey Chau, Robert Rollins and Matt Westcott.

Updated tutorial

The “Your first Wagtail site” tutorial has been extensively updated to cover concepts such as dynamic page listings, template context variables, and tagging. This update was contributed by Scot Hacker, with additions from Matt Westcott.

Other features

	Added support of a custom edit_handler for site settings. See docs for the site settings module. (Axel Haustant)

	Added get_landing_page_template getter method to AbstractForm (Gagaro)

	Added Page.get_admin_display_title method to override how the title is displayed in the admin (Henk-Jan van Hasselaar)

	Added support for specifying custom HTML attributes for table rows on ModelAdmin index pages. See ModelAdmin.get_extra_attrs_for_row() (Andy Babic)

	Added first_common_ancestor method to PageQuerySet (Tim Heap)

	Page chooser now opens at the deepest ancestor page that covers all the pages of the required page type (Tim Heap)

	PageChooserBlock now accepts a target_model option to specify the required page type (Tim Heap)

	Modeladmin forms now respect fields / exclude options passed on custom model forms (Thejaswi Puthraya)

	Added new StreamField block type StaticBlock for blocks that occupy a position in a stream but otherwise have no configuration; see StaticBlock (Benoît Vogel)

	Added new StreamField block type BlockQuoteBlock (Scot Hacker)

	Updated Cloudflare cache module to use the v4 API (Albert O’Connor)

	Added exclude_from_explorer attribute to the ModelAdmin class to allow hiding instances of a page type from Wagtail’s explorer views (Andy Babic)

	Added above_login, below_login, fields and login_form customisation blocks to the login page template - see Customising admin templates (Tim Heap)

	ChoiceBlock now accepts a callable as the choices list (Mikalai Radchuk)

	Redundant action buttons are now omitted from the root page in the explorer (Nick Smith)

	Locked pages are now disabled from editing at the browser level (Edd Baldry)

	Added wagtail.core.query.PageQuerySet.in_site() method for filtering page QuerySets to pages within the specified site (Chris Rogers)

	Added the ability to override the default index settings for Elasticsearch. See Elasticsearch Backend (PyMan Claudio Marinozzi)

	Extra options for the Elasticsearch constructor should be now defined with the new key OPTIONS of the WAGTAILSEARCH_BACKENDS setting (PyMan Claudio Marinozzi)

Bug fixes

	AbstractForm now respects custom get_template methods on the page model (Gagaro)

	Use specific page model for the parent page in the explore index (Gagaro)

	Remove responsive styles in embed when there is no ratio available (Gagaro)

	Parent page link in page search modal no longer disappears on hover (Dan Braghis)

	ModelAdmin views now consistently call get_context_data (Andy Babic)

	Header for search results on the redirects index page now shows the correct count when the listing is paginated (Nick Smith)

	set_url_paths management command is now compatible with Django 1.10 (Benjamin Bach)

	Form builder email notifications now output multiple values correctly (Sævar Öfjörð Magnússon)

	Closing ‘more’ dropdown on explorer no longer jumps to the top of the page (Ducky)

	Users with only publish permission are no longer given implicit permission to delete pages (Matt Westcott)

	search_garbage_collect management command now works when wagtailsearchpromotions is not installed (Morgan Aubert)

	wagtail.contrib.settings context processor no longer fails when request.site is unavailable (Diederik van der Boor)

	TableBlock content is now indexed for search (Morgan Aubert)

	Page.copy() is now marked as alters_data, to prevent template code from triggering it (Diederik van der Boor)

Upgrade considerations

unique_together constraint on custom image rendition models needs updating

If your project is using a custom image model (see Custom image models), you will need to
update the unique_together option on the corresponding Rendition model when upgrading to Wagtail 1.8. Change the line:

unique_together = (
 ('image', 'filter', 'focal_point_key'),
)

to:

unique_together = (
 ('image', 'filter_spec', 'focal_point_key'),
)

You will then be able to run manage.py makemigrations and manage.py migrate as normal.

Additionally, third-party code that accesses the Filter and Rendition models directly should note the following and make updates where applicable:

	Filter will no longer be a Django model as of Wagtail 1.9, and as such, ORM operations on it (such as save() and Filter.objects) are deprecated. It should be instantiated and used as an in-memory object instead - for example, flt, created = Filter.objects.get_or_create(spec='fill-100x100') should become flt = Filter(spec='fill-100x100').

	The filter field of Rendition models is no longer in use; lookups should instead be performed on the filter_spec field, which contains a filter spec string such as 'fill-100x100'.

wagtail.wagtailimages.models.get_image_model has moved

The get_image_model function should now be imported from wagtail.wagtailimages rather than wagtail.wagtailimages.models. See Referring to the image model.

Non-administrators now need ‘bulk delete’ permission to delete pages with children

As a precaution against accidental data loss, this release introduces a new “bulk delete” permission on pages, which can be set through the Settings -> Groups area. Non-administrator users must have this permission in order to delete pages that have children; a user without this permission would have to delete each child individually before deleting the parent. By default, no groups are assigned this new permission. If you wish to restore the previous behaviour, and don’t want to configure permissions manually through the admin interface, you can do so with a data migration. Create an empty migration using ./manage.py makemigrations myapp --empty --name assign_bulk_delete_permission (replacing myapp with the name of one of your project’s apps) and edit the migration file to contain the following:

from __future__ import unicode_literals

from django.db import migrations

def add_bulk_delete_permission(apps, schema_editor):
 """Find all groups with add/edit page permissions, and assign them bulk_delete permission"""
 GroupPagePermission = apps.get_model('wagtailcore', 'GroupPagePermission')
 for group_id, page_id in GroupPagePermission.objects.filter(
 permission_type__in=['add', 'edit']
).values_list('group', 'page').distinct():
 GroupPagePermission.objects.create(
 group_id=group_id, page_id=page_id, permission_type='bulk_delete'
)

def remove_bulk_delete_permission(apps, schema_editor):
 GroupPagePermission = apps.get_model('wagtailcore', 'GroupPagePermission')
 GroupPagePermission.objects.filter(permission_type='bulk_delete').delete()

class Migration(migrations.Migration):

 dependencies = [
 # keep the original dependencies line
]

 operations = [
 migrations.RunPython(add_bulk_delete_permission, remove_bulk_delete_permission),
]

Cloudflare cache module now requires a ZONEID setting

The wagtail.contrib.wagtailfrontendcache.backends.CloudflareBackend module has been updated to use Cloudflare’s v4 API, replacing the previous v1 implementation (which is unsupported as of November 9th, 2016 [https://www.cloudflare.com/docs/client-api/]). The new API requires users to supply a zone identifier, which should be passed as the ZONEID field of the WAGTAILFRONTENDCACHE setting:

WAGTAILFRONTENDCACHE = {
 'cloudflare': {
 'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.CloudflareBackend',
 'EMAIL': 'your-cloudflare-email-address@example.com',
 'TOKEN': 'your cloudflare api token',
 'ZONEID': 'your cloudflare domain zone id',
 },
}

For details of how to obtain the zone identifier, see the Cloudflare API documentation [https://api.cloudflare.com/#getting-started-resource-ids].

Extra options for the Elasticsearch constructor should be now defined with the new key OPTIONS of the WAGTAILSEARCH_BACKENDS setting

For the Elasticsearch backend, all extra keys defined in WAGTAILSEARCH_BACKENDS are passed directly to the Elasticsearch constructor. All these keys now should be moved inside the new OPTIONS dictionary. The old behaviour is still supported, but deprecated.

For example, the following configuration changes the connection class that the Elasticsearch connector [https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch] uses:

from elasticsearch import RequestsHttpConnection

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
 'connection_class': RequestsHttpConnection,
 }
}

As connection_class needs to be passed through to the Elasticsearch connector [https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch], it should be moved to the new OPTIONS dictionary:

from elasticsearch import RequestsHttpConnection

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
 'OPTIONS': {
 'connection_class': RequestsHttpConnection,
 }
 }
}

 Wagtail 1.7 release notes

Wagtail 1.7 release notes

	What’s new

	Upgrade considerations

What’s new

Elasticsearch 2 support

Wagtail now supports Elasticsearch 2. Note that you need to change backend in WAGTAILSEARCH_BACKENDS, if you wish to switch to Elasticsearch 2. This feature was developed by Karl Hobley.

See: Elasticsearch Backend

New image tag options for file type and JPEG compression level

The {% image %} tag now supports extra parameters for specifying the image file type and JPEG compression level on a per-tag basis. See Output image format and JPEG image quality. This feature was developed by Karl Hobley.

AWS CloudFront support added to cache invalidation module

Wagtail’s cache invalidation module can now invalidate pages cached in AWS CloudFront when they are updated or unpublished.
This feature was developed by Rob Moorman.

See: Amazon CloudFront

Unpublishing subpages

Unpublishing a page now gives the option to unpublish its subpages at the same time. This feature was developed by Jordi Joan.

Minor features

	The |embed filter has been converted into a templatetag {% embed %} (Janneke Janssen)

	The wagtailforms module now provides a FormSubmissionPanel for displaying details of form submissions; see Displaying form submission information for documentation. (João Luiz Lorencetti)

	The Wagtail version number can now be obtained as a tuple using from wagtail import VERSION (Tim Heap)

	send_mail logic has been moved from AbstractEmailForm.process_form_submission into AbstractEmailForm.send_mail. Now it’s easier to override this logic (Tim Leguijt)

	Added before_create_page, before_edit_page, before_delete_page hooks (Karl Hobley)

	Updated font sizes and colours to improve legibility of admin menu and buttons (Stein Strindhaug)

	Added pagination to “choose destination” view when moving pages (Nick Smith, Žan Anderle)

	Added ability to annotate search results with score - see Annotating results with score (Karl Hobley)

	Added ability to limit access to form submissions - see filter_form_submissions_for_user (Mikalai Radchuk)

	Added the ability to configure the number of days search logs are kept for, through the WAGTAILSEARCH_HITS_MAX_AGE setting (Stephen Rice)

	SnippetChooserBlock now supports passing the model name as a string (Nick Smith)

	Redesigned account settings / logout area in the sidebar for better clarity (Janneke Janssen)

	Pillow’s image optimisation is now applied when saving JPEG images (Karl Hobley)

Bug fixes

	Migrations for wagtailcore and project template are now reversible (Benjamin Bach)

	Migrations no longer depend on wagtailcore and taggit’s __latest__ migration, logically preventing those apps from receiving new migrations (Matt Westcott)

	The default image format label text (‘Full width’, ‘Left-aligned’, ‘Right-aligned’) is now localised (Mikalai Radchuk)

	Text on the front-end ‘password required’ form is now marked for translation (Janneke Janssen)

	Text on the page view restriction form is now marked for translation (Luiz Boaretto)

	Fixed toggle behaviour of userbar on mobile (Robert Rollins)

	Image rendition / document file deletion now happens on a post_delete signal, so that files are not lost if the deletion does not proceed (Janneke Janssen)

	“Your recent edits” list on dashboard no longer leaves out pages that another user has subsequently edited (Michael Cordover, Kees Hink, João Luiz Lorencetti)

	InlinePanel now accepts a classname parameter as per the documentation (emg36, Matt Westcott)

	Disabled use of escape key to revert content of rich text fields, which could cause accidental data loss (Matt Westcott)

	Setting USE_THOUSAND_SEPARATOR = True no longer breaks the rendering of numbers in JS code for InlinePanel (Mattias Loverot, Matt Westcott)

	Images / documents pagination now preserves GET parameters (Bojan Mihelac)

	Wagtail’s UserProfile model now sets a related_name of wagtail_userprofile to avoid naming collisions with other user profile models (Matt Westcott)

	Non-text content is now preserved when adding or editing a link within rich text (Matt Westcott)

	Fixed preview when SECURE_SSL_REDIRECT = True (Aymeric Augustin)

	Prevent hang when truncating an image filename without an extension (Ricky Robinett)

Upgrade considerations

Project template’s initial migration should not depend on wagtailcore.__latest__

On projects created under previous releases of Wagtail, the home/migrations/0001_initial.py migration created by the wagtail start command contains the following dependency line:

dependencies = [
 ('wagtailcore', '__latest__'),
]

This may produce InconsistentMigrationHistory errors under Django 1.10 when upgrading Wagtail, since Django interprets this to mean that no new migrations can legally be added to wagtailcore after this migration is applied. This line should be changed to:

dependencies = [
 ('wagtailcore', '0029_unicode_slugfield_dj19'),
]

Custom image models require a data migration for the new filter_spec field

The data model for image renditions will be changed in Wagtail 1.8 to eliminate Filter as a model. Wagtail sites using a custom image model (see Custom image models) need to have a schema and data migration in place prior to upgrading to Wagtail 1.8. To create these migrations:

	Run manage.py makemigrations to create the schema migration

	Run manage.py makemigrations --empty myapp (replacing myapp with the name of the app containing the custom image model) to create an empty migration

	Edit the created migration to contain:

from wagtail.wagtailimages.utils import get_fill_filter_spec_migrations

and, for the operations list:

forward, reverse = get_fill_filter_spec_migrations('myapp', 'CustomRendition')
operations = [
 migrations.RunPython(forward, reverse),
]

replacing myapp and CustomRendition with the app and model name for the custom rendition model.

embed template filter is now a template tag

The embed template filter, used to translate the URL of a media resource (such as a YouTube video) into a corresponding embeddable HTML fragment, has now been converted to a template tag. Any template code such as:

{% load wagtailembeds_tags %}
...
{{ my_media_url|embed }}

should now be rewritten as:

{% load wagtailembeds_tags %}
...
{% embed my_media_url %}

 Wagtail 1.6.3 release notes

Wagtail 1.6.3 release notes

	What’s changed

What’s changed

Bug fixes

	Restore compatibility with django-debug-toolbar 1.5 (Matt Westcott)

	Edits to StreamFields are no longer ignored in page edits on Django >=1.10.1 when a default value exists (Matt Westcott)

 Wagtail 1.6.2 release notes

Wagtail 1.6.2 release notes

	What’s changed

What’s changed

Bug fixes

	Initial values of checkboxes on group permission edit form now are visible on Django 1.10 (Matt Westcott)

 Wagtail 1.6.1 release notes

Wagtail 1.6.1 release notes

	What’s new

	Upgrade considerations

What’s new

Minor features

	Added WAGTAIL_ALLOW_UNICODE_SLUGS setting to make Unicode support optional in page slugs (Matt Westcott)

Bug fixes

	Wagtail’s middleware classes are now compatible with Django 1.10’s new-style middleware [https://docs.djangoproject.com/en/stable/releases/1.10/#new-style-middleware] (Karl Hobley)

	The can_create_at() method is now checked in the create page view (Mikalai Radchuk)

	Fixed regression on Django 1.10.1 causing Page subclasses to fail to use PageManager (Matt Westcott)

	ChoiceBlocks with lazy translations as option labels no longer break Elasticsearch indexing (Matt Westcott)

	The page editor no longer fails to load JavaScript files with ManifestStaticFilesStorage (Matt Westcott)

	Django 1.10 enables client-side validation for all forms by default, but it fails to handle all the nuances of how forms are used in Wagtail. The client-side validation has been disabled for the Wagtail UI (Matt Westcott)

Upgrade considerations

Multi-level inheritance and custom managers

The inheritance rules for Custom Page managers have been updated to match Django’s standard behaviour. In the vast majority of scenarios there will be no change. However, in the specific case where a page model with a custom objects manager is subclassed further, the subclass will be assigned a plain Manager instead of a PageManager, and will now need to explicitly override this with a PageManager to function correctly:

class EventPage(Page):
 objects = EventManager()

class SpecialEventPage(EventPage):
 # Previously SpecialEventPage.objects would be set to a PageManager automatically;
 # this now needs to be set explicitly
 objects = PageManager()

 Wagtail 1.6 release notes

Wagtail 1.6 release notes

	What’s new

	Upgrade considerations

What’s new

Django 1.10 support

Wagtail is now compatible with Django 1.10. Thanks to Mikalai Radchuk and Paul J Stevens for developing this, and to Tim Graham for reviewing and additional Django core assistance.

{% include_block %} tag for improved StreamField template inclusion

In previous releases, the standard way of rendering the HTML content of a StreamField was through a simple variable template tag, such as {{ page.body }}. This had the drawback that any templates used in the StreamField rendering would not inherit variables from the parent template’s context, such as page and request. To address this, a new template tag {% include_block page.body %} has been introduced as the new recommended way of outputting Streamfield content - this replicates the behaviour of Django’s {% include %} tag, passing on the full template context by default. For full documentation, see Template rendering. This feature was developed by Matt Westcott, and additionally ported to Jinja2 (see: Jinja2 template support) by Mikalai Radchuk.

Unicode page slugs

Page URL slugs can now contain Unicode characters, when using Django 1.9 or above. This feature was developed by Behzad Nategh.

Permission-limited explorer menu

The explorer sidebar menu now limits the displayed pages to the ones the logged-in user has permission for. For example, if a user has permission over the pages MegaCorp / Departments / Finance and MegaCorp / Departments / HR, then their menu will begin at “Departments”. This reduces the amount of “drilling-down” the user has to do, and is an initial step towards supporting fully independent sites on the same Wagtail installation. This feature was developed by Matt Westcott and Robert Rollins, California Institute of Technology.

Minor features

	Image upload form in image chooser now performs client side validation so that the selected file is not lost in the submission (Jack Paine)

	oEmbed URL for audioBoom was updated (Janneke Janssen)

	Remember tree location in page chooser when switching between Internal / External / Email link (Matt Westcott)

	FieldRowPanel now creates equal-width columns automatically if col* classnames are not specified (Chris Rogers)

	Form builder now validates against multiple fields with the same name (Richard McMillan)

	The ‘choices’ field on the form builder no longer has a maximum length (Johannes Spielmann)

	Multiple ChooserBlocks inside a StreamField are now prefetched in bulk, for improved performance (Michael van Tellingen, Roel Bruggink, Matt Westcott)

	Added new EmailBlock and IntegerBlock (Oktay Altay)

	Added a new FloatBlock, DecimalBlock and a RegexBlock (Oktay Altay, Andy Babic)

	Wagtail version number is now shown on the settings menu (Chris Rogers)

	Added a system check to validate that fields listed in search_fields are defined on the model (Josh Schneier)

	Added formal APIs for customising the display of StructBlock forms within the page editor - see Custom editing interfaces for StructBlock (Matt Westcott)

	wagtailforms.models.AbstractEmailForm now supports multiple email recipients (Serafeim Papastefanos)

	Added ability to delete users through Settings -> Users (Vincent Audebert; thanks also to Ludolf Takens and Tobias Schmidt for alternative implementations)

	Page previews now pass additional HTTP headers, to simulate the page being viewed by the logged-in user and avoid clashes with middleware (Robert Rollins)

	Added back buttons to page delete and unpublish confirmation screens (Matt Westcott)

	Recognise Flickr embed URLs using HTTPS (Danielle Madeley)

	Success message when publishing a page now correctly respects custom URLs defined on the specific page class (Chris Darko)

	Required blocks inside StreamField are now indicated with asterisks (Stephen Rice)

Bug fixes

	Email templates and document uploader now support custom STATICFILES_STORAGE (Jonny Scholes)

	Removed alignment options (deprecated in HTML and not rendered by Wagtail) from TableBlock context menu (Moritz Pfeiffer)

	Fixed incorrect CSS path on ModelAdmin’s “choose a parent page” view

	Prevent empty redirect by overnormalisation

	“Remove link” button in rich text editor didn’t trigger “edit” event, leading to the change to sometimes not be persisted (Matt Westcott)

	RichText values can now be correctly evaluated as booleans (Mike Dingjan, Bertrand Bordage)

	wagtailforms no longer assumes an .html extension when determining the landing page template filename (kakulukia)

	Fixed styling glitch on bi-colour icon + text buttons in Chrome (Janneke Janssen)

	StreamField can now be used in an InlinePanel (Gagaro)

	StreamField block renderings using templates no longer undergo double escaping when using Jinja2 (Aymeric Augustin)

	RichText objects no longer undergo double escaping when using Jinja2 (Aymeric Augustin, Matt Westcott)

	Saving a page by pressing enter key no longer triggers a “Changes may not be saved message” (Sean Muck, Matt Westcott)

	RoutablePageMixin no longer breaks in the presence of instance-only attributes such as those generated by FileFields (Fábio Macêdo Mendes)

	The --schema-only flag on update_index no longer expects an argument (Karl Hobley)

	Added file handling to support custom user add/edit forms with images/files (Eraldo Energy)

	Placeholder text in modeladmin search now uses the correct template variable (Adriaan Tijsseling)

	Fixed bad SQL syntax for updating URL paths on Microsoft SQL Server (Jesse Legg)

	Added workaround for Django 1.10 bug https://code.djangoproject.com/ticket/27037 causing forms with file upload fields to fail validation (Matt Westcott)

Upgrade considerations

Form builder FormField models require a migration

There are some changes in the wagtailforms.models.AbstractFormField model:

	The choices field has been changed from a CharField to a TextField, to allow it to be of unlimited length;

	The help text for the to_address field has been changed: it now gives more information on how to specify multiple addresses.

These changes require migration. If you are using the wagtailforms module in your project, you will need to run python manage.py makemigrations and python manage.py migrate after upgrading, in order to apply changes to your form page models.

TagSearchable needs removing from custom image / document model migrations

The mixin class wagtail.wagtailadmin.taggable.TagSearchable, used internally by image and document models, has been deprecated. If you are using custom image or document models in your project, the migration(s) which created them will contain frozen references to wagtail.wagtailadmin.taggable.TagSearchable, which must now be removed. The line:

import wagtail.wagtailadmin.taggable

should be replaced by:

import wagtail.wagtailsearch.index

and the line:

bases=(models.Model, wagtail.wagtailadmin.taggable.TagSearchable),

should be updated to:

bases=(models.Model, wagtail.wagtailsearch.index.Indexed),

render and render_basic methods on StreamField blocks now accept a context keyword argument

The render and render_basic methods on wagtail.wagtailcore.blocks.Block have been updated to accept an optional context keyword argument, a template context to use when rendering the block. If you have defined any custom StreamField blocks that override either of these methods, the method signature now needs to be updated to include this keyword argument:

class MyBlock(Block):

 def render(self, value):
 ...

 def render_basic(self, value):
 ...

should now become:

class MyBlock(Block):

 def render(self, value, context=None):
 ...

 def render_basic(self, value, context=None):
 ...

 Wagtail 1.5.3 release notes

Wagtail 1.5.3 release notes

	What’s changed

What’s changed

Bug fixes

	Pin html5lib to version 0.999999 to prevent breakage caused by internal API changes (Liam Brenner)

 Wagtail 1.5.2 release notes

Wagtail 1.5.2 release notes

	What’s new

What’s new

Bug fixes

	Fixed regression in 1.5.1 on editing external links (Stephen Rice)

 Wagtail 1.5.1 release notes

Wagtail 1.5.1 release notes

	What’s new

What’s new

Bug fixes

	When editing a document link in rich text, the document ID is no longer erroneously interpreted as a page ID (Stephen Rice)

	Removing embedded media from rich text by mouse click action now gets correctly registered as a change to the field (Loic Teixeira)

	Rich text editor is no longer broken in InlinePanels (Matt Westcott, Gagaro)

	Rich text editor is no longer broken in settings (Matt Westcott)

	Link tooltip now shows correct urls for newly inserted document links (Matt Westcott)

	Now page chooser (in a rich text editor) opens up at the link’s parent page, rather than at the page itself (Matt Westcott)

	Reverted fix for explorer menu scrolling with page content, as it blocked access to menus that exceed screen height

	Image listing in the image chooser no longer becomes unpaginated after an invalid upload form submission (Stephen Rice)

	Confirmation message on the ModelAdmin delete view no longer errors if the model’s string representation depends on the primary key (Yannick Chabbert)

	Applied correct translation tags for ‘permanent’ / ‘temporary’ labels on redirects (Matt Westcott)

 Wagtail 1.5 release notes

Wagtail 1.5 release notes

	What’s new

	Upgrade considerations

What’s new

Reorganised page explorer actions

[image: ../_images/releasenotes_1_5_explorermenu.png]
The action buttons on the page explorer have been reorganised to reduce clutter, and lesser-used actions have been moved to a “More” dropdown. A new hook register_page_listing_buttons has been added for adding custom action buttons to the page explorer.

ModelAdmin

Wagtail now includes an app wagtail.contrib.modeladmin (previously available separately as the wagtailmodeladmin [https://github.com/rkhleics/wagtailmodeladmin] package) which allows you to configure arbitrary Django models to be listed, added and edited through the Wagtail admin.

[image: ../_images/releasenotes_1_5_modeladmin.png]
See ModelAdmin for full documentation. This feature was developed by Andy Babic.

TableBlock

TableBlock, a new StreamField block type for editing table-based content, is now available through the wagtail.contrib.table_block module.

[image: ../_images/screen40_table_block1.png]
See TableBlock for documentation. This feature was developed by Moritz Pfeiffer, David Seddon and Brad Busenius.

Improved link handling in rich text

[image: ../_images/releasenotes_1_5_unlink.gif]
The user experience around inserting, editing and removing links inside rich text areas has been greatly improved: link destinations are shown as tooltips, and existing links can be edited as well as unlinked. This feature was developed by Loic Teixeira.

Improvements to the “Image serve view”

Dynamic image serve view

This view, which is used for requesting image thumbnails from an external app, has had some improvements made to it in this release.

	A “redirect” action has been added which will redirect the user to where the resized image is hosted rather than serving it from the app. This may be beneficial for performance if the images are hosted externally (eg, S3)

	It now takes an optional extra path component which can be used for appending a filename to the end of the URL

	The key is now configurable on the view so you don’t have to use your project’s SECRET_KEY

	It’s been refactored into a class based view and you can now create multiple serve views with different image models and/or keys

	It now supports serving image files using django-sendfile (Thanks to Yannick Chabbert for implementing this)

Minor features

	Password reset email now reminds the user of their username (Matt Westcott)

	Added jinja2 support for the settings template tag (Tim Heap)

	Added ‘revisions’ action to pages list (Roel Bruggink)

	Added a hook insert_global_admin_js for inserting custom JavaScript throughout the admin backend (Tom Dyson)

	Recognise instagram embed URLs with www prefix (Matt Westcott)

	The type of the search_fields attribute on Page models (and other searchable models) has changed from a tuple to a list (see upgrade consideration below) (Tim Heap)

	Use PasswordChangeForm when user changes their password, requiring the user to enter their current password (Matthijs Melissen)

	Highlight current day in date picker (Jonas Lergell)

	Eliminated the deprecated register.assignment_tag on Django 1.9 (Josh Schneier)

	Increased size of Save button on site settings (Liam Brenner)

	Optimised Site.find_for_request to only perform one database query (Matthew Downey)

	Notification messages on creating / editing sites now include the site name if specified (Chris Rogers)

	Added --schema-only option to update_index management command

	Added meaningful default icons to StreamField blocks (Benjamin Bach)

	Added title text to action buttons in the page explorer (Liam Brenner)

	Changed project template to explicitly import development settings via settings.dev (Tomas Olander)

	Improved L10N and I18N for revisions list (Roel Bruggink)

	The multiple image uploader now displays details of server errors (Nigel Fletton)

	Added WAGTAIL_APPEND_SLASH setting to determine whether page URLs end in a trailing slash - see Append Slash (Andrew Tork Baker)

	Added auto resizing text field, richtext field, and snippet chooser to styleguide (Liam Brenner)

	Support field widget media inside StreamBlock blocks (Karl Hobley)

	Spinner was added to Save button on site settings (Liam Brenner)

	Added success message after logout from Admin (Liam Brenner)

	Added get_upload_to method to AbstractRendition which, when overridden, allows control over where image renditions are stored (Rob Moggach and Matt Westcott)

	Added a mechanism to customise the add / edit user forms for custom user models - see Custom user models (Nigel Fletton)

	Added internal provision for swapping in alternative rich text editors (Karl Hobley)

Bug fixes

	The currently selected day is now highlighted only in the correct month in date pickers (Jonas Lergell)

	Fixed crash when an image without a source file was resized with the “dynamic serve view”

	Registered settings admin menu items now show active correctly (Matthew Downey)

	Direct usage of Document model replaced with get_document_model function in wagtail.contrib.wagtailmedusa and in wagtail.contrib.wagtailapi

	Failures on sending moderation notification emails now produce a warning, rather than crashing the admin page outright (Matt Fozard)

	All admin forms that could potentially include file upload fields now specify multipart/form-data where appropriate (Tim Heap)

	REM units in Wagtailuserbar caused incorrect spacing (Vincent Audebert)

	Explorer menu no longer scrolls with page content (Vincent Audebert)

	decorate_urlpatterns now uses functools.update_wrapper to keep view names and docstrings (Mario César)

	StreamField block controls are no longer hidden by the StreamField menu when prepending a new block (Vincent Audebert)

	Removed invalid use of __ alias that prevented strings getting picked up for translation (Juha Yrjölä)

	Routable pages without a main view no longer raise a TypeError (Bojan Mihelac)

	Fixed UnicodeEncodeError in wagtailforms when downloading a CSV for a form containing non-ASCII field labels on Python 2 (Mikalai Radchuk)

	Server errors during search indexing on creating / updating / deleting a model are now logged, rather than causing the overall operation to fail (Karl Hobley)

	Objects are now correctly removed from search indexes on deletion (Karl Hobley)

Upgrade considerations

Buttons in admin now require class="button"

The Wagtail admin CSS has been refactored for maintainability, and buttons now require an explicit button class. (Previously, the styles were applied on all inputs of type "submit", "reset" or "button".) If you have created any apps that extend the Wagtail admin with new views / templates, you will need to add this class to all buttons.

The search_fields attribute on models should now be set to a list

On searchable models (eg, Page or custom Image models) the search_fields attribute should now be a list instead of a tuple.

For example, the following Page model:

class MyPage(Page):
 ...

 search_fields = Page.search_fields + (
 indexed.SearchField('body'),
)

Should be changed to:

class MyPage(Page):
 ...

 search_fields = Page.search_fields + [
 indexed.SearchField('body'),
]

To ease the burden on third-party modules, adding tuples to Page.search_fields will still work. But this backwards-compatibility fix will be removed in Wagtail 1.7.

Elasticsearch backend now defaults to verifying SSL certs

Previously, if you used the Elasticsearch backend, configured with the URLS property like:

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
 'URLS': ['https://example.com/'],
 }
}

Elasticsearch would not be configured to verify SSL certificates for HTTPS URLs. This has been changed so that SSL certificates are verified for HTTPS connections by default.

If you need the old behaviour back, where SSL certificates are not verified for your HTTPS connection, you can configure the Elasticsearch backend with the HOSTS option, like so:

WAGTAILSEARCH_BACKENDS = {
 'default': {
 'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
 'HOSTS': [{
 'host': 'example.com'
 'use_ssl': True,
 'verify_certs': False,
 }],
 }
}

See the Elasticsearch-py documentation [http://elasticsearch-py.readthedocs.org/en/stable/#ssl-and-authentication] for more configuration options.

Project template now imports settings.dev explicitly

In previous releases, the project template’s settings/__init__.py file was set up to import the development settings (settings/dev.py), so that these would be picked up as the default (i.e. whenever a settings module was not specified explicitly). However, in some setups this meant that the development settings were being inadvertently imported in production mode.

For this reason, the import in settings/__init__.py has now been removed, and commands must now specify myproject.settings.dev or myproject.settings.production as appropriate; the supporting scripts (such as manage.py) have been updated accordingly. As this is a change to the project template, existing projects are not affected; however, if you have any common scripts or configuration files that rely on importing myproject.settings as the settings module, these will need to be updated in order to work on projects created under Wagtail 1.5.

 Wagtail 1.4.6 release notes

Wagtail 1.4.6 release notes

	What’s changed

What’s changed

Bug fixes

	Pin html5lib to version 0.999999 to prevent breakage caused by internal API changes (Liam Brenner)

 Wagtail 1.4.5 release notes

Wagtail 1.4.5 release notes

	What’s changed

What’s changed

Bug fixes

	Paste / drag operations done entirely with the mouse are now correctly picked up as edits within the rich text editor (Matt Fozard)

	Logic for cancelling the “unsaved changes” check on form submission has been fixed to work cross-browser (Stephen Rice)

	The “unsaved changes” confirmation was erroneously shown on IE / Firefox when previewing a page with validation errors (Matt Westcott)

	The up / down / delete controls on the “Promoted search results” form no longer trigger a form submission (Matt Westcott)

	Opening preview window no longer performs user-agent sniffing, and now works correctly on IE11 (Matt Westcott)

	Tree paths are now correctly assigned when previewing a newly-created page underneath a parent with deleted children (Matt Westcott)

	Added BASE_URL setting back to project template

	Clearing the search box in the page chooser now returns the user to the browse view (Matt Westcott)

	The above fix also fixed an issue where Internet Explorer got stuck in the search view upon opening the page chooser (Matt Westcott)

 Wagtail 1.4.4 release notes

Wagtail 1.4.4 release notes

	What’s changed

What’s changed

Translations

	New translation for Slovenian (Mitja Pagon)

Bug fixes

	The wagtailuserbar template tag now gracefully handles situations where the request object is not in the template context (Matt Westcott)

	Meta classes on StreamField blocks now handle multiple inheritance correctly (Tim Heap)

	Now user can upload images / documents only into permitted collection from choosers

	Keyboard shortcuts for save / preview on the page editor no longer incorrectly trigger the “unsaved changes” message (Jack Paine / Matt Westcott)

	Redirects no longer fail when both a site-specific and generic redirect exist for the same URL path (Nick Smith, João Luiz Lorencetti)

	Wagtail now checks that Group is registered with the Django admin before unregistering it (Jason Morrison)

	Previewing inaccessible pages no longer fails with ALLOWED_HOSTS = ['*'] (Robert Rollins)

	The submit button ‘spinner’ no longer activates if the form has client-side validation errors (Jack Paine, Matt Westcott)

	Overriding MESSAGE_TAGS in project settings no longer causes messages in the Wagtail admin to lose their styling (Tim Heap)

	Border added around explorer menu to stop it blending in with StreamField block listing; also fixes invisible explorer menu in Firefox 46 (Alex Gleason)

 Wagtail 1.4.3 release notes

Wagtail 1.4.3 release notes

	What’s changed

What’s changed

Bug fixes

	Fixed regression introduced in 1.4.2 which caused Wagtail to query the database during a system check (Tim Heap)

 Wagtail 1.4.2 release notes

Wagtail 1.4.2 release notes

	What’s changed

What’s changed

Bug fixes

	Streamfields no longer break on validation error

	Number of validation errors in each tab in the editor is now correctly reported again

	Userbar now opens on devices with both touch and mouse (Josh Barr)

	wagtail.wagtailadmin.wagtail_hooks no longer calls static during app load, so you can use ManifestStaticFilesStorage without calling the collectstatic command

	Fixed crash on page save when a custom Page edit handler has been specified using the edit_handler attribute (Tim Heap)

 Wagtail 1.4.1 release notes

Wagtail 1.4.1 release notes

	What’s changed

What’s changed

Bug fixes

	Fixed erroneous rendering of up arrow icons (Rob Moorman)

 Wagtail 1.4 release notes

Wagtail 1.4 release notes

	What’s new

	Upgrade considerations

Wagtail 1.4 is designated a Long Term Support (LTS) release. Long Term Support releases will continue to receive maintenance updates as necessary to address security and data-loss related issues, up until the next LTS release (typically a period of 8 months).

What’s new

Page revision management

[image: ../_images/revision-ui.png]

From the page editing interface, editors can now access a list of previous revisions of the page, and preview or roll back to any earlier revision.

Collections for image / document organisation

Images and documents can now be organised into collections, set up by administrators through the Settings -> Collections menu item. User permissions can be set either globally (on the ‘Root’ collection) or on individual collections, allowing different user groups to keep their media items separated. Thank you to the University of South Wales for sponsoring this feature.

Redesigned userbar

[image: ../_images/userbar-corner.png]

The Wagtail userbar (which gives editors quick access to the admin from the site frontend) has been redesigned, and no longer depends on an iframe. The new design allows more flexibility in label text, more configurable positioning to avoid overlapping with site navigation, and adds a new “Show in Explorer” option. This feature was developed by Thomas Winter and Gareth Price.

Protection against unsaved changes

The page editor interface now produces a warning if the user attempts to navigate away while there are unsaved changes.

Multiple document uploader

The “Add a document” interface now supports uploading multiple documents at once, in the same way as uploading images.

Custom document models

The Document model can now be overridden using the new WAGTAILDOCS_DOCUMENT_MODEL setting. This works in the same way that WAGTAILIMAGES_IMAGE_MODEL works for Image.

Removed django-compressor dependency

Wagtail no longer depends on the django-compressor [http://django-compressor.readthedocs.org/] library. While we highly recommend compressing and bundling the CSS and Javascript on your sites, using django-compressor places additional installation and configuration demands on the developer, so this has now been made optional.

Minor features

	The page search interface now searches all fields instead of just the title (Kait Crawford)

	Snippets now support a custom edit_handler property; this can be used to implement a tabbed interface, for example. See Customising the tabbed interface (Mikalai Radchuk)

	Date/time pickers now respect the locale’s ‘first day of week’ setting (Peter Quade)

	Refactored the way forms are constructed for the page editor, to allow custom forms to be used

	Notification message on publish now indicates whether the page is being published now or scheduled for publication in future (Chris Rogers)

	Server errors when uploading images / documents through the chooser modal are now reported back to the user (Nigel Fletton)

	Added a hook insert_global_admin_css for inserting custom CSS throughout the admin backend (Tom Dyson)

	Added a hook construct_explorer_page_queryset for customising the set of pages displayed in the page explorer

	Page models now perform field validation, including testing slugs for uniqueness within a parent page, at the model level on saving

	Page slugs are now auto-generated at the model level on page creation if one has not been specified explicitly

	The Page model now has two new methods get_site() and get_url_parts() to aid with customising the page URL generation logic

	Upgraded jQuery to 2.2.1 (Charlie Choiniere)

	Multiple homepage summary items (construct_homepage_summary_items hook) now better vertically spaced (Nicolas Kuttler)

	Email notifications can now be sent in HTML format. See Email Notifications (Mike Dingjan)

	StreamBlock now has provision for throwing non-field-specific validation errors

	Wagtail now works with Willow 0.3, which supports auto-correcting the orientation of images based on EXIF data

	New translations for Hungarian, Swedish (Sweden) and Turkish

Bug fixes

	Custom page managers no longer raise an error when used on an abstract model

	Wagtail’s migrations are now all reversible (Benjamin Bach)

	Deleting a page content type now preserves existing pages as basic Page instances, to prevent tree corruption

	The Page.path field is now explicitly given the “C” collation on PostgreSQL to prevent tree ordering issues when using a database created with the Slovak locale

	Wagtail’s compiled static assets are now put into the correct directory on Windows (Aarni Koskela)

	ChooserBlock now correctly handles models with primary keys other than id (alexpilot11)

	Fixed typo in Wistia oEmbed pattern (Josh Hurd)

	Added more accurate help text for the Administrator flag on user accounts (Matt Fozard)

	Tags added on the multiple image uploader are now saved correctly

	Documents created by a user are no longer deleted when the user is deleted

	Fixed a crash in RedirectMiddleware when a middleware class before SiteMiddleware returns a response (Josh Schneier)

	Fixed error retrieving the moderator list on pages that are covered by multiple moderator permission records (Matt Fozard)

	Ordering pages in the explorer by reverse ‘last updated’ time now puts pages with no revisions at the top

	WagtailTestUtils now works correctly on custom user models without a username field (Adam Bolfik)

	Logging in to the admin as a user with valid credentials but no admin access permission now displays an error message, rather than rejecting the user silently

	StreamBlock HTML rendering now handles non-ASCII characters correctly on Python 2 (Mikalai Radchuk)

	Fixed a bug preventing pages with a OneToOneField from being copied (Liam Brenner)

	SASS compilation errors during Wagtail development no longer cause exit of Gulp process, instead throws error to console and continues (Thomas Winter)

	Explorer page listing now uses specific page models, so that custom URL schemes defined on Page subclasses are respected

	Made settings menu clickable again in Firefox 46.0a2 (Juha Kujala)

	User management index view no longer assumes the presence of username, first_name, last_name and email fields on the user model (Eirik Krogstad)

Upgrade considerations

Removal of django-compressor

As Wagtail no longer installs django-compressor automatically as a dependency, you may need to make changes to your site’s configuration when upgrading. If your project is actively using django-compressor (that is, your site templates contain {% compress %} tags), you should ensure that your project’s requirements explicitly include django-compressor, rather than indirectly relying on Wagtail to install it. If you are not actively using django-compressor on your site, you should update your settings file to remove the line 'compressor' from INSTALLED_APPS, and remove 'compressor.finders.CompressorFinder' from STATICFILES_FINDERS.

Page models now enforce field validation

In previous releases, field validation on Page models was only applied at the form level, meaning that creating pages directly at the model level would bypass validation. For example, if NewsPage is a Page model with a required body field, then code such as:

news_page = NewsPage(title="Hello", slug='hello')
parent_page = NewsIndex.objects.get()
parent_page.add_child(instance=news_page)

would create a page that does not comply with the validation rules. This is no longer possible, as validation is now enforced at the model level on save() and save_revision(); as a result, code that creates pages programmatically (such as unit tests, and import scripts) may need to be updated to ensure that it creates valid pages.

 Wagtail 1.3.1 release notes

Wagtail 1.3.1 release notes

	What’s changed

What’s changed

Bug fixes

	Applied workaround for failing wagtailimages migration on Django 1.8.8 / 1.9.1 with Postgres (see Django issue #26034 [https://code.djangoproject.com/ticket/26034])

 Wagtail 1.3 release notes

Wagtail 1.3 release notes

	What’s new

	Upgrade considerations

What’s new

Django 1.9 support

Wagtail is now compatible with Django 1.9.

Indexing fields across relations in Elasticsearch

Fields on related objects can now be indexed in Elasticsearch using the new indexed.RelatedFields declaration type:

class Book(models.Model, index.Indexed):
 ...

 search_fields = [
 index.SearchField('title'),
 index.FilterField('published_date'),

 index.RelatedFields('author', [
 index.SearchField('name'),
 index.FilterField('date_of_birth'),
]),
]

Search books where their author was born after 1950
Both the book title and the authors name will be searched
>>> Book.objects.filter(author__date_of_birth__gt=date(1950, 1, 1)).search("Hello")

See: index.RelatedFields

Cross-linked admin search UI

The search interface in the Wagtail admin now includes a toolbar to quickly switch between different search types - pages, images, documents and users. A new register_admin_search_area hook is provided for adding new search types to this toolbar.

Minor features

	Added WagtailPageTests, a helper module to simplify writing tests for Wagtail sites. See Testing your Wagtail site

	Added system checks to check the subpage_types and parent_page_types attributes of page models

	Added WAGTAIL_PASSWORD_RESET_ENABLED setting to allow password resets to be disabled independently of the password management interface (John Draper)

	Submit for moderation notification emails now include the editor name (Denis Voskvitsov)

	Updated fonts for more comprehensive Unicode support

	Added .alt attribute to image renditions

	The default src, width, height and alt attributes can now be overridden by attributes passed to the {% image %} tag

	Added keyboard shortcuts for preview and save in the page editor

	Added Page methods can_exist_under, can_create_at, can_move_to for customising page type business rules

	wagtailadmin.utils.send_mail now passes extra keyword arguments to Django’s send_mail function (Matthew Downey)

	page_unpublish signal is now fired for each page that was unpublished by a call to PageQuerySet.unpublish()

	Add get_upload_to method to AbstractImage, to allow overriding the default image upload path (Ben Emery)

	Notification emails are now sent per user (Matthew Downey)

	Added the ability to override the default manager on Page models

	Added an optional human-friendly site_name field to sites (Timo Rieber)

	Added a system check to warn developers who use a custom Wagtail build but forgot to build the admin css

	Added success message after updating image from the image upload view (Christian Peters)

	Added a request.is_preview variable for templates to distinguish between previewing and live (Denis Voskvitsov)

	‘Pages’ link on site stats dashboard now links to the site homepage when only one site exists, rather than the root level

	Added support for chaining multiple image operations on the {% image %} tag (Christian Peters)

	New translations for Arabic, Latvian and Slovak

Bug fixes

	Images and page revisions created by a user are no longer deleted when the user is deleted (Rich Atkinson)

	HTTP cache purge now works again on Python 2 (Mitchel Cabuloy)

	Locked pages can no longer be unpublished (Alex Bridge)

	Site records now implement get_by_natural_key

	Creating pages at the root level (and any other instances of the base Page model) now properly respects the parent_page_types setting

	Settings menu now opens correctly from the page editor and styleguide views

	subpage_types / parent_page_types business rules are now enforced when moving pages

	Multi-word tags on images and documents are now correctly preserved as a single tag (LKozlowski)

	Changed verbose names to start with lower case where necessary (Maris Serzans)

	Invalid images no longer crash the image listing (Maris Serzans)

	MenuItem url parameter can now take a lazy URL (Adon Metcalfe, rayrayndwiga)

	Added missing translation tag to InlinePanel ‘Add’ button (jnns)

	Added missing translation tag to ‘Signing in…’ button text (Eugene MechanisM)

	Restored correct highlighting behaviour of rich text toolbar buttons

	Rendering a missing image through ImageChooserBlock no longer breaks the whole page (Christian Peters)

	Filtering by popular tag in the image chooser now works when using the database search backend

Upgrade considerations

Jinja2 template tag modules have changed location

Due to a change in the way template tags are imported in Django 1.9, it has been necessary to move the Jinja2 template tag modules from “templatetags” to a new location, “jinja2tags”. The correct configuration settings to enable Jinja2 templates are now as follows:

TEMPLATES = [
 # ...
 {
 'BACKEND': 'django.template.backends.jinja2.Jinja2',
 'APP_DIRS': True,
 'OPTIONS': {
 'extensions': [
 'wagtail.core.jinja2tags.core',
 'wagtail.wagtailadmin.jinja2tags.userbar',
 'wagtail.wagtailimages.jinja2tags.images',
],
 },
 }
]

See: Jinja2 template support

ContentType-returning methods in wagtailcore are deprecated

The following internal functions and methods in wagtail.wagtailcore.models, which return a list of ContentType objects, have been deprecated. Any uses of these in your code should be replaced by the corresponding new function which returns a list of model classes instead:

	get_page_types() - replaced by get_page_models()

	Page.clean_subpage_types() - replaced by Page.clean_subpage_models()

	Page.clean_parent_page_types() - replaced by Page.clean_parent_page_models()

	Page.allowed_parent_page_types() - replaced by Page.allowed_parent_page_models()

	Page.allowed_subpage_types() - replaced by Page.allowed_subpage_models()

In addition, note that these methods now return page types that are marked as is_creatable = False, including the base Page class. (Abstract models are not included, as before.)

 Wagtail 1.2 release notes

Wagtail 1.2 release notes

	What’s new

	Upgrade considerations

What’s new

Site settings module

Wagtail now includes a contrib module (previously available as the wagtailsettings [https://pypi.python.org/pypi/wagtailsettings/] package) to allow administrators to edit site-specific settings.

See: Site settings

Jinja2 support

The core templatetags (pageurl, slugurl, image, richtext and wagtailuserbar) are now compatible with Jinja2 so it’s now possible to use Jinja2 as the template engine for your Wagtail site.

Note that the variable name self is reserved in Jinja2, and so Wagtail now provides alternative variable names where self was previously used: page to refer to page objects, and value to refer to StreamField blocks. All code examples in this documentation have now been updated to use the new variable names, for compatibility with Jinja2; however, users of the default Django template engine can continue to use self.

See: Jinja2 template support

Site-specific redirects

You can now create redirects for a particular site using the admin interface.

Search API improvements

Wagtail’s image and document models now provide a search method on their QuerySets, making it easy to perform searches on filtered data sets. In addition, search methods now accept two new keyword arguments:

	operator, to determine whether multiple search terms will be treated as ‘or’ (any term may match) or ‘and’ (all terms must match);

	order_by_relevance, set to True (the default) to order by relevance or False to preserve the QuerySet’s original ordering.

See: Searching

max_num and min_num parameters on inline panels

Inline panels now accept the optional parameters max_num and min_num, to specify the maximum / minimum number of child items that must exist in order for the page to be valid.

See: Inline Panels and Model Clusters

get_context on StreamField blocks

StreamField blocks now provide a get_context method that can be overridden to pass additional variables to the block’s template.

Browsable API

The Wagtail API now incorporates the browsable front-end provided by Django REST Framework. Note that this must be enabled by adding 'rest_framework' to your project’s INSTALLED_APPS setting.

Python 3.5 support

Wagtail now supports Python 3.5 when run in conjunction with Django 1.8.6 or later.

Minor features

	WagtailRedirectMiddleware can now ignore the query string if there is no redirect that exactly matches it

	Order of URL parameters now ignored by redirect middleware

	Added SQL Server compatibility to image migration

	Added class attributes to Wagtail rich text editor buttons to aid custom styling

	Simplified body_class in default homepage template

	page_published signal now called with the revision object that was published

	Added a favicon to the admin interface, customisable by overriding the branding_favicon block (see Custom branding).

	Added spinner animations to long-running form submissions

	The EMBEDLY_KEY setting has been renamed to WAGTAILEMBEDS_EMBEDLY_KEY

	StreamField blocks are now added automatically, without showing the block types menu, if only one block type exists (Alex Gleason)

	The first_published_at and latest_revision_created_at fields on page models are now available as filter fields on search queries

	Wagtail admin now standardises on a single thumbnail image size, to reduce the overhead of creating multiple renditions

	Rich text fields now strip out HTML comments

	Page editor form now sets enctype="multipart/form-data" as appropriate, allowing FileField to be used on page models (Petr Vacha)

	Explorer navigation menu on a completely empty page tree now takes you to the root level, rather than doing nothing

	Added animation and fixed display issues when focusing a rich text field (Alex Gleason)

	Added a system check to warn if Pillow is compiled without JPEG / PNG support

	Page chooser now prevents users from selecting the root node where this would be invalid

	New translations for Dutch (Netherlands), Georgian, Swedish and Turkish (Turkey)

Bug fixes

	Page slugs are no longer auto-updated from the page title if the page is already published

	Deleting a page permission from the groups admin UI does not immediately submit the form

	Wagtail userbar is shown on pages that do not pass a page variable to the template (e.g. because they override the serve method)

	request.site now set correctly on page preview when the page is not in the default site

	Project template no longer raises a deprecation warning (Maximilian Stauss)

	PageManager.sibling_of(page) and PageManager.not_sibling_of(page) now default to inclusive (i.e. page is considered a sibling of itself), for consistency with other sibling methods

	The “view live” button displayed after publishing a page now correctly reflects any changes made to the page slug (Ryan Pineo)

	API endpoints now accept and ignore the _ query parameter used by jQuery for cache-busting

	Page slugs are no longer cut off when Unicode characters are expanded into multiple characters (Sævar Öfjörð Magnússon)

	Searching a specific page model while filtering it by either ID or tree position no longer raises an error (Ashia Zawaduk)

	Scrolling an over-long explorer menu no longer causes white background to show through (Alex Gleason)

	Removed jitter when hovering over StreamField blocks (Alex Gleason)

	Non-ASCII email addresses no longer throw errors when generating Gravatar URLs (Denis Voskvitsov, Kyle Stratis)

	Dropdown for ForeignKey s are now styled consistently (Ashia Zawaduk)

	Date choosers now appear on top of StreamField menus (Sergey Nikitin)

	Fixed a migration error that was raised when block-updating from 0.8 to 1.1+

	Page.copy() no longer breaks on models with a ClusterTaggableManager or ManyToManyField

	Validation errors when inserting an embed into a rich text area are now reported back to the editor

Upgrade considerations

PageManager.sibling_of(page) and PageManager.not_sibling_of(page) have changed behaviour

In previous versions of Wagtail, the sibling_of and not_sibling_of methods behaved inconsistently depending on whether they were called on a manager (e.g. Page.objects.sibling_of(some_page) or EventPage.objects.sibling_of(some_page)) or a QuerySet (e.g. Page.objects.all().sibling_of(some_page) or EventPage.objects.live().sibling_of(some_page)).

Previously, the manager methods behaved as exclusive by default; that is, they did not count the passed-in page object as a sibling of itself:

>>> event_1 = EventPage.objects.get(title='Event 1')
>>> EventPage.objects.sibling_of(event_1)
[<EventPage: Event 2>] # OLD behaviour: Event 1 is not considered a sibling of itself

This has now been changed to be inclusive by default; that is, the page is counted as a sibling of itself:

>>> event_1 = EventPage.objects.get(title='Event 1')
>>> EventPage.objects.sibling_of(event_1)
[<EventPage: Event 1>, <EventPage: Event 2>] # NEW behaviour: Event 1 is considered a sibling of itself

If the call to sibling_of or not_sibling_of is chained after another QuerySet method - such as all(), filter() or live() - behaviour is unchanged; this behaves as inclusive, as it did in previous versions:

>>> event_1 = EventPage.objects.get(title='Event 1')
>>> EventPage.objects.all().sibling_of(event_1)
[<EventPage: Event 1>, <EventPage: Event 2>] # OLD and NEW behaviour

If your project includes queries that rely on the old (exclusive) behaviour, this behaviour can be restored by adding the keyword argument inclusive=False:

>>> event_1 = EventPage.objects.get(title='Event 1')
>>> EventPage.objects.sibling_of(event_1, inclusive=False)
[<EventPage: Event 2>] # passing inclusive=False restores the OLD behaviour

Image.search and Document.search methods are deprecated

The Image.search and Document.search methods have been deprecated in favour of the new QuerySet-based search mechanism - see Searching Images, Documents and custom models. Code using the old search methods should be updated to search on QuerySets instead; for example:

Image.search("Hello", filters={'uploaded_by_user': user})

can be rewritten as:

Image.objects.filter(uploaded_by_user=user).search("Hello")

Wagtail API requires adding rest_framework to INSTALLED_APPS

If you have the Wagtail API (wagtail.contrib.wagtailapi) enabled, you must now add 'rest_framework' to your project’s INSTALLED_APPS setting. In the current version the API will continue to function without this app, but the browsable front-end will not be available; this ability will be dropped in a future release.

Page.get_latest_revision_as_page() now returns live page object when there are no draft changes

If you have any application code that makes direct updates to page data, at the model or database level, be aware that the way these edits are reflected in the page editor has changed.

Previously, the get_latest_revision_as_page method - used by the page editor to return the current page revision for editing - always retrieved data from the page’s revision history. Now, it will only do so if the page has unpublished changes (i.e. the page is in live + draft state) - pages which have received no draft edits since being published will return the page’s live data instead.

As a result, any changes made directly to a live page object will be immediately reflected in the editor without needing to update the latest revision record (but note, the old behaviour is still used for pages in live + draft state).

 Wagtail 1.1 release notes

Wagtail 1.1 release notes

	What’s new

	Upgrade considerations

What’s new

specific() method on PageQuerySet

Usually, an operation that retrieves a QuerySet of pages (such as homepage.get_children()) will return them as basic Page instances, which only include the core page data such as title. The specific() method (e.g. homepage.get_children().specific()) now allows them to be retrieved as their most specific type, using the minimum number of queries.

“Promoted search results” has moved into its own module

Previously, this was implemented in wagtailsearch but now has
been moved into a separate module: wagtail.contrib.wagtailsearchpromotions

Atomic rebuilding of Elasticsearch indexes

The Elasticsearch search backend now accepts an experimental ATOMIC_REBUILD flag which ensures that the existing search index continues to be available while the update_index task is running. See ATOMIC_REBUILD.

The wagtailapi module now uses Django REST Framework

The wagtailapi module is now built on Django REST Framework and it now also has a library of serialisers [https://github.com/wagtail/wagtail/blob/stable/1.1.x/wagtail/contrib/wagtailapi/serializers.py] that you can use in your own REST Framework based APIs. No user-facing changes have been made.

We hope to support more REST framework features, such as a browsable API, in future releases.

Permissions fixes in the admin interface

A number of inconsistencies around permissions in the admin interface were fixed in this release:

	Removed all permissions for “User profile” (not used)

	Removed “delete” permission for Images and documents (not used)

	Users can now access images and documents when they only have the “change” permission (previously required “add” permission as well)

	Permissions for Users now taken from custom user model, if set (previously always used permissions on Djangos builtin User model)

	Groups and Users now respond consistently to their respective “add”, “change” and “delete” permissions

Searchable snippets

Snippets that inherit from wagtail.wagtailsearch.index.Indexed are now given a search box on the snippet chooser and listing pages. See Making Snippets Searchable.

Minor features

	Implemented deletion of form submissions

	Implemented pagination in the page chooser modal

	Changed INSTALLED_APPS in project template to list apps in precedence order

	The {% image %} tag now supports filters on the image variable, e.g. {% image primary_img|default:secondary_img width-500 %}

	Moved the style guide menu item into the Settings sub-menu

	Search backends can now be specified by module (e.g. wagtail.wagtailsearch.backends.elasticsearch), rather than a specific class (wagtail.wagtailsearch.backends.elasticsearch.ElasticSearch)

	Added descendant_of filter to the API

	Added optional directory argument to “wagtail start” command

	Non-superusers can now view/edit/delete sites if they have the correct permissions

	Image file size is now stored in the database, to avoid unnecessary filesystem lookups

	Page URL lookups hit the cache/database less often

	Updated URLs within the admin backend to use namespaces

	The update_index task now indexes objects in batches of 1000, to indicate progress and avoid excessive memory use

	Added database indexes on PageRevision and Image to improve performance on large sites

	Search in page chooser now uses Wagtail’s search framework, to order results by relevance

	PageChooserPanel now supports passing a list (or tuple) of accepted page types

	The snippet type parameter of SnippetChooserPanel can now be omitted, or passed as a model name string rather than a model class

	Added aliases for the self template variable to accommodate Jinja as a templating engine: page for pages, field_panel for field panels / edit handlers, and value for blocks

	Added signposting text to the explorer to steer editors away from creating pages at the root level unless they are setting up new sites

	“Clear choice” and “Edit this page” buttons are no longer shown on the page field of the group page permissions form

	Altered styling of stream controls to be more like all other buttons

	Added ability to mark page models as not available for creation using the flag is_creatable; pages that are abstract Django models are automatically made non-creatable

	New translations for Norwegian Bokmål and Icelandic

Bug fixes

	Text areas in the non-default tab of the page editor now resize to the correct height

	Tabs in “insert link” modal in the rich text editor no longer disappear (Tim Heap)

	H2 elements in rich text fields were accidentally given a click() binding when put insite a collapsible multi field panel

	The wagtailimages module is now compatible with remote storage backends that do not allow reopening closed files

	Search no longer crashes when auto-indexing a model that doesn’t have an id field

	The wagtailfrontendcache module’s HTTP backend has been rewritten to reliably direct requests to the configured cache hostname

	Resizing single pixel images with the “fill” filter no longer raises “ZeroDivisionError” or “tile cannot extend outside image”

	The QuerySet returned from search operations when using the database search backend now correctly preserves additional properties of the original query, such as prefetch_related / select_related

	Responses from the external image URL generator are correctly marked as streaming and will no longer fail when used with Django’s cache middleware

	Page copy now works with pages that use multiple inheritance

	Form builder pages now pick up template variables defined in the get_context method

	When copying a page, IDs of child objects within page revision records were not remapped to the new objects; this would cause those objects to be lost from the original page when editing the new one

	Newly added redirects now take effect on all sites, rather than just the site that the Wagtail admin backend was accessed through

	Add user form no longer throws a hard error on validation failure

Upgrade considerations

“Promoted search results” no longer in wagtailsearch

This feature has moved into a contrib module so is no longer enabled by default.

To re-enable it, add wagtail.contrib.wagtailsearchpromotions to your INSTALLED_APPS:

INSTALLED_APPS = [
 ...

 'wagtail.contrib.wagtailsearchpromotions',

 ...

If you have references to the wagtail.wagtailsearch.models.EditorsPick model in your
project, you will need to update these to point to the wagtail.contrib.wagtailsearchpromotions.models.SearchPromotion model instead.

If you created your project using the wagtail start command with Wagtail 1.0,
you will probably have references to this model in the search/views.py file.

is_abstract flag on page models has been replaced by is_creatable

Previous versions of Wagtail provided an undocumented is_abstract flag on page models - not to be confused with Django’s abstract Meta flag - to indicate that it should not be included in the list of available page types for creation. (Typically this would be used on model classes that were designed to be subclassed to create new page types, rather than used directly.) To avoid confusion with Django’s distinct concept of abstract models, this has now been replaced by a new flag, is_creatable.

If you have used is_abstract = True on any of your models, you should now change this to is_creatable = False.

It is not necessary to include this flag if the model is abstract in the Django sense (i.e. it has abstract = True in the model’s Meta class), since it would never be valid to create pages of that type.

 Wagtail 1.0 release notes

Wagtail 1.0 release notes

	What’s changed

	Upgrade considerations

What’s changed

StreamField - a field type for freeform content

StreamField provides an editing model for freeform content such as blog posts and news stories, allowing diverse content types such as text, images, headings, video and more specialised types such as maps and charts to be mixed in any order. See Freeform page content using StreamField.

Wagtail API - A RESTful API for your Wagtail site

When installed, the new Wagtail API module provides a RESTful web API to your
Wagtail site. You can use this for accessing your raw field content for your
sites pages, images and documents in JSON format.

MySQL support

Wagtail now officially supports MySQL as a database backend.

Django 1.8 support

Wagtail now officially supports running under Django 1.8.

Vanilla project template

The built-in project template is more like the Django built-in one with several
Wagtail-specific additions. It includes bare minimum settings and two apps (home and search).

Minor changes

	Dropped Django 1.6 support

	Dropped Python 2.6 and 3.2 support

	Dropped Elasticsearch 0.90.x support

	Removed dependency on libsass

	Users without usernames can now be created and edited in the admin interface

	Added new translations for Croatian and Finnish

Core

	The Page model now records the date/time that a page was first published, as the field first_published_at

	Increased the maximum length of a page slug from 50 to 255 characters

	Added hooks register_rich_text_embed_handler and register_rich_text_link_handler for customising link / embed handling within rich text fields

	Page URL paths can now be longer than 255 characters

Admin

UI

	Improvements to the layout of the left-hand menu footer

	Menu items of custom apps are now highlighted when being used

	Added thousands separator for counters on dashboard

	Added contextual links to admin notification messages

	When copying pages, it is now possible to specify a place to copy to

	Added pagination to the snippets listing and chooser

	Page / document / image / snippet choosers now include a link to edit the chosen item

	Plain text fields in the page editor now use auto-expanding text areas

	Added “Add child page” button to admin userbar

	Added update notifications (See: Wagtail update notifications)

Page editor

	JavaScript includes in the admin backend have been moved to the HTML header, to accommodate form widgets that render inline scripts that depend on libraries such as jQuery

	The external link chooser in rich text areas now accepts URLs of the form ‘/some/local/path’, to allow linking to non-Wagtail-controlled URLs within the local site

	Bare text entered in rich text areas is now automatically wrapped in a paragraph element

Edit handlers API

	FieldPanel now accepts an optional widget parameter to override the field’s default form widget

	Page model fields without a FieldPanel are no longer displayed in the form

	No longer need to specify the base model on InlinePanel definitions

	Page classes can specify an edit_handler property to override the default Content / Promote / Settings tabbed interface. See Customising the tabbed interface.

Other admin changes

	SCSS files in wagtailadmin now use absolute imports, to permit overriding by user stylesheets

	Removed the dependency on LOGIN_URL and LOGIN_REDIRECT_URL settings

	Password reset view names namespaced to wagtailadmin

	Removed the need to add permission check on admin views (now automated)

	Reversing django.contrib.auth.admin.login will no longer lead to Wagtails login view (making it easier to have frontend login views)

	Added cache-control headers to all admin views. This allows Varnish/Squid/CDN to run on vanilla settings in front of a Wagtail site

	Date / time pickers now consistently use times without seconds, to prevent JavasSript behaviour glitches when focusing / unfocusing fields

	Added hook construct_homepage_summary_items for customising the site summary panel on the admin homepage

	Renamed the construct_wagtail_edit_bird hook to construct_wagtail_userbar

	‘static’ template tags are now used throughout the admin templates, in place of STATIC_URL

Docs

	Support for django-sendfile added

	Documents now served with correct mime-type

	Support for If-Modified-Since HTTP header

Search

	Search view accepts “page” GET parameter in line with pagination

	Added AUTO_UPDATE flag to search backend settings to enable/disable automatically updating the search index on model changes

Routable pages

	Added a new decorator-based syntax for RoutablePage, compatible with Django 1.8

Bug fixes

	The document_served signal now correctly passes the Document class as sender and the document as instance

	Image edit page no longer throws OSError when the original image is missing

	Collapsible blocks stay open on any form error

	Document upload modal no longer switches tabs on form errors

	with_metaclass is now imported from Django’s bundled copy of the six library, to avoid errors on Mac OS X from an outdated system copy of the library being imported

Upgrade considerations

Support for older Django/Python/Elasticsearch versions dropped

This release drops support for Django 1.6, Python 2.6/3.2 and Elasticsearch 0.90.x. Please make sure these are updated before upgrading.

If you are upgrading from Elasticsearch 0.90.x, you may also need to update the elasticsearch pip package to a version greater than 1.0 as well.

Wagtail version upgrade notifications are enabled by default

Starting from Wagtail 1.0, the admin dashboard will (for admin users only) perform a check to see if newer releases are available. This also provides the Wagtail team with the hostname of your Wagtail site. If you’d rather not receive update notifications, or if you’d like your site to remain unknown, you can disable it by adding this line to your settings file:

WAGTAIL_ENABLE_UPDATE_CHECK = False

InlinePanel definitions no longer need to specify the base model

In previous versions of Wagtail, inline child blocks on a page or snippet were defined using a declaration like:

InlinePanel(HomePage, 'carousel_items', label="Carousel items")

It is no longer necessary to pass the base model as a parameter, so this declaration should be changed to:

InlinePanel('carousel_items', label="Carousel items")

The old format is now deprecated; all existing InlinePanel declarations should be updated to the new format.

Custom image models should now set the admin_form_fields attribute

Django 1.8 now requires that all the fields in a ModelForm must be defined in its Meta.fields attribute.

As Wagtail uses Django’s ModelForm for creating image model forms, we’ve added a new attribute called admin_form_fields
that should be set to a tuple of field names on the image model.

See Custom image models for an example.

You no longer need LOGIN_URL and LOGIN_REDIRECT_URL to point to Wagtail admin.

If you are upgrading from an older version of Wagtail, you probably want to remove these from your project settings.

Prevously, these two settings needed to be set to wagtailadmin_login and wagtailadmin_dashboard
respectively or Wagtail would become very tricky to log in to. This is no longer the case and Wagtail
should work fine without them.

RoutablePage now uses decorator syntax for defining views

In previous versions of Wagtail, page types that used the RoutablePageMixin had endpoints configured by setting their subpage_urls attribute to a list of urls with view names. This will not work on Django 1.8 as view names can no longer be passed into a url (see: https://docs.djangoproject.com/en/stable/releases/1.8/#django-conf-urls-patterns).

Wagtail 1.0 introduces a new syntax where each view function is annotated with a @route decorator - see RoutablePageMixin.

The old subpage_urls convention will continue to work on Django versions prior to 1.8, but this is now deprecated; all existing RoutablePage definitions should be updated to the decorator-based convention.

Upgrading from the external wagtailapi module.

If you were previously using the external wagtailapi module (which has now become wagtail.contrib.wagtailapi). Please be aware of the following backwards-incompatible changes:

1. Representation of foreign keys has changed

Foreign keys were previously represented by just the value of their primary key.
For example:

"feed_image": 1

This has now been changed to add some meta information:

"feed_image": {
 "id": 1,
 "meta": {
 "type": "wagtailimages.Image",
 "detail_url": "http://api.example.com/api/v1/images/1/"
 }
}

2. On the page detail view, the “parent” field has been moved out of meta

Previously, there was a “parent” field in the “meta” section on the page detail
view:

{
 "id": 10,
 "meta": {
 "type": "demo.BlogPage",
 "parent": 2
 },

 ...
}

This has now been moved to the top level. Also, the above change to how foreign
keys are represented applies to this field too:

{
 "id": 10,
 "meta": {
 "type": "demo.BlogPage"
 },
 "parent": {
 "id": 2,
 "meta": {
 "type": "demo.BlogIndexPage"
 }
 }

 ...
}

Celery no longer automatically used for sending notification emails

Previously, Wagtail would try to use Celery whenever the djcelery module was
installed, even if Celery wasn’t actually set up. This could cause a very hard
to track down problem where notification emails would not be sent so this
functionality has now been removed.

If you would like to keep using Celery for sending notification emails, have a
look at: django-celery-email [https://pypi.python.org/pypi/django-celery-email]

Login/Password reset views renamed

It was previously possible to reverse the Wagtail login view using django.contrib.auth.views.login.
This is no longer possible. Update any references to wagtailadmin_login.

Password reset view name has changed from password_reset to wagtailadmin_password_reset.

JavaScript includes in admin backend have been moved

To improve compatibility with third-party form widgets, pages within the Wagtail admin backend now output their JavaScript includes in the HTML header, rather than at the end of the page. If your project extends the admin backend (through the register_admin_menu_item hook, for example) you will need to ensure that all associated JavaScript code runs correctly from the new location. In particular, any code that accesses HTML elements will need to be contained in an ‘onload’ handler (e.g. jQuery’s $(document).ready()).

EditHandler internal API has changed

While it is not an official Wagtail API, it has been possible for Wagtail site implementers to define their own EditHandler subclasses for use in panel definitions, to customise the behaviour of the page / snippet editing forms. If you have made use of this facility, you will need to update your custom EditHandlers, as this mechanism has been refactored (to allow EditHandler classes to keep a persistent reference to their corresponding model). If you have only used Wagtail’s built-in panel types (FieldPanel, InlinePanel, PageChooserPanel and so on), you are unaffected by this change.

Previously, functions like FieldPanel acted as ‘factory’ functions, where a call such as FieldPanel('title') constructed and returned an EditHandler subclass tailored to work on a ‘title’ field. These functions now return an object with a bind_to_model method instead; the EditHandler subclass can be obtained by calling this with the model class as a parameter. As a guide to updating your custom EditHandler code, you may wish to refer to the relevant change to the Wagtail codebase [https://github.com/wagtail/wagtail/commit/121c01c7f7db6087a985fa8dc9957bc78b9f6a6a].

chooser_panel templates are obsolete

If you have added your own custom admin views to the Wagtail admin (e.g. through the register_admin_urls hook), you may have used one of the following template includes to incorporate a chooser element for pages, documents, images or snippets into your forms:

	wagtailadmin/edit_handlers/chooser_panel.html

	wagtailadmin/edit_handlers/page_chooser_panel.html

	wagtaildocs/edit_handlers/document_chooser_panel.html

	wagtailimages/edit_handlers/image_chooser_panel.html

	wagtailsnippets/edit_handlers/snippet_chooser_panel.html

All of these templates are now deprecated. Wagtail now provides a set of Django form widgets for this purpose - AdminPageChooser, AdminDocumentChooser, AdminImageChooser and AdminSnippetChooser - which can be used in place of the HiddenInput widget that these form fields were previously using. The field can then be rendered using the regular wagtailadmin/shared/field.html or wagtailadmin/shared/field_as_li.html template.

document_served signal arguments have changed

Previously, the document_served signal (which is fired whenever a user downloads a document) passed the document instance as the sender. This has now been changed to correspond the behaviour of Django’s built-in signals; sender is now the Document class, and the document instance is passed as the argument instance. Any existing signal listeners that expect to receive the document instance in sender must now be updated to check the instance argument instead.

Custom image models must specify an admin_form_fields list

Previously, the forms for creating and editing images followed Django’s default behaviour of showing all fields defined on the model; this would include any custom fields specific to your project that you defined by subclassing AbstractImage and setting WAGTAILIMAGES_IMAGE_MODEL. This behaviour is risky as it may lead to fields being unintentionally exposed to the user, and so Django has deprecated this, for removal in Django 1.8. Accordingly, if you create your own custom subclass of AbstractImage, you must now provide an admin_form_fields property, listing the fields that should appear on the image creation / editing form - for example:

from wagtail.wagtailimages.models import AbstractImage, Image

class MyImage(AbstractImage):
 photographer = models.CharField(max_length=255)
 has_legal_approval = models.BooleanField()

 admin_form_fields = Image.admin_form_fields + ['photographer']

construct_wagtail_edit_bird hook has been renamed

Previously you could customize the Wagtail userbar using the construct_wagtail_edit_bird hook.
The hook has been renamed to construct_wagtail_userbar.

The old hook is now deprecated; all existing construct_wagtail_edit_bird declarations should be updated to the new hook.

IMAGE_COMPRESSION_QUALITY setting has been renamed

The IMAGE_COMPRESSION_QUALITY setting, which determines the quality of saved JPEG images as a value from 1 to 100, has been renamed to WAGTAILIMAGES_JPEG_QUALITY. If you have used this setting, please update your settings file accordingly.

 Wagtail 0.8.10 release notes

Wagtail 0.8.10 release notes

	What’s changed

What’s changed

Bug fixes

	When copying a page, IDs of child objects within page revision records were not remapped to the new objects; this would cause those objects to be lost from the original page when editing the new one

	Search no longer crashes when auto-indexing a model that doesn’t have an id field (Scot Hacker)

	Resizing single pixel images with the “fill” filter no longer raises “ZeroDivisionError” or “tile cannot extend outside image”

 Wagtail 0.8.8 release notes

Wagtail 0.8.8 release notes

	What’s changed

What’s changed

Bug fixes

	Form builder no longer raises a TypeError when submitting unchecked boolean field

	Image upload form no longer breaks when using i10n thousand separators

	Multiple image uploader now escapes HTML in filenames

	Retrieving an individual item from a sliced BaseSearchResults object now properly takes the slice offset into account

	Removed dependency on unicodecsv which fixes a crash on Python 3

	Submitting unicode text in form builder form no longer crashes with UnicodeEncodeError on Python 2

	Creating a proxy model from a Page class no longer crashes in the system check

	Unrecognised embed URLs passed to the |embed filter no longer cause the whole page to crash with an EmbedNotFoundException

	Underscores no longer get stripped from page slugs

 Wagtail 0.8.7 release notes

Wagtail 0.8.7 release notes

	What’s changed

What’s changed

Bug fixes

	wagtailfrontendcache no longer tries to purge pages that are not in a site

	The contents of <div> elements in the rich text editor were not being whitelisted

	Due to the above issue, embeds/images in a rich text field would sometimes be saved into the database in their editor representation

	RoutablePage now prevents subpage_urls from being defined as a property, which would cause a memory leak

	Added validation to prevent pages being created with only whitespace characters in their title fields

	Users are no longer logged out on changing password when SessionAuthenticationMiddleware (added in Django 1.7) is in use

	Added a workaround for a Python / Django issue that prevented documents with certain non-ASCII filenames from being served

 Wagtail 0.8.6 release notes

Wagtail 0.8.6 release notes

	What’s new

	Upgrade considerations

What’s new

Minor features

	Translations updated, including new translations for Czech, Italian and Japanese

	The “fixtree” command can now delete orphaned pages

Bug fixes

	django-taggit library updated to 0.12.3, to fix a bug with migrations on SQLite on Django 1.7.2 and above (https://github.com/alex/django-taggit/issues/285)

	Fixed a bug that caused children of a deleted page to not be deleted if they had a different type

Upgrade considerations

Orphaned pages may need deleting

This release fixes a bug with page deletion introduced in 0.8, where deleting a page with child pages will result in those child pages being left behind in the database (unless the child pages are of the same type as the parent). This may cause errors later on when creating new pages in the same position. To identify and delete these orphaned pages, it is recommended that you run the following command (from the project root) after upgrading to 0.8.6:

$./manage.py fixtree

This will output a list of any orphaned pages found, and request confirmation before deleting them.

Since this now makes fixtree an interactive command, a ./manage.py fixtree --noinput option has been added to restore the previous non-interactive behaviour. With this option enabled, deleting orphaned pages is always skipped.

 Wagtail 0.8.5 release notes

Wagtail 0.8.5 release notes

	What’s new

What’s new

Bug fixes

	On adding a new page, the available page types are ordered by the displayed verbose name

	Active admin submenus were not properly closed when activating another

	get_sitemap_urls is now called on the specific page class so it can now be overridden

	(Firefox and IE) Fixed preview window hanging and not refocusing when “Preview” button is clicked again

	Storage backends that return raw ContentFile objects are now handled correctly when resizing images

	Punctuation characters are no longer stripped when performing search queries

	When adding tags where there were none before, it is now possible to save a single tag with multiple words in it

	richtext template tag no longer raises TypeError if None is passed into it

	Serving documents now uses a streaming HTTP response and will no longer break Django’s cache middleware

	User admin area no longer fails in the presence of negative user IDs (as used by django-guardian’s default settings)

	Password reset emails now use the BASE_URL setting for the reset URL

	BASE_URL is now included in the project template’s default settings file

 Wagtail 0.8.4 release notes

Wagtail 0.8.4 release notes

	What’s new

What’s new

Bug fixes

	It is no longer possible to have the explorer and settings menu open at the same time

	Page IDs in page revisions were not updated on page copy, causing subsequent edits to be committed to the original page instead

	Copying a page now creates a new page revision, ensuring that changes to the title/slug are correctly reflected in the editor (and also ensuring that the user performing the copy is logged)

	Prevent a race condition when creating Filter objects

	On adding a new page, the available page types are ordered by the displayed verbose name

 Wagtail 0.8.3 release notes

Wagtail 0.8.3 release notes

	What’s new

	Upgrade considerations

What’s new

Bug fixes

	Added missing jQuery UI sprite files, causing collectstatic to throw errors (most reported on Heroku)

	Page system check for on_delete actions of ForeignKeys was throwing false positives when page class descends from an abstract class (Alejandro Giacometti)

	Page system check for on_delete actions of ForeignKeys now only raises warnings, not errors

	Fixed a regression where form builder submissions containing a number field would fail with a JSON serialisation error

	Resizing an image with a focal point equal to the image size would result in a divide-by-zero error

	Focal point indicator would sometimes be positioned incorrectly for small or thin images

	Fix: Focal point chooser background colour changed to grey to make working with transparent images easier

	Elasticsearch configuration now supports specifying HTTP authentication parameters as part of the URL, and defaults to ports 80 (HTTP) and 443 (HTTPS) if port number not specified

	Fixed a TypeError when previewing pages that use RoutablePageMixin

	Rendering image with missing file in rich text no longer crashes the entire page

	IOErrors thrown by underlying image libraries that are not reporting a missing image file are no longer caught

	Fix: Minimum Pillow version bumped to 2.6.1 to work around a crash when using images with transparency

	Fix: Images with transparency are now handled better when being used in feature detection

Upgrade considerations

Port number must be specified when running Elasticsearch on port 9200

In previous versions, an Elasticsearch connection URL in WAGTAILSEARCH_BACKENDS without an explicit port number (e.g. http://localhost/) would be treated as port 9200 (the Elasticsearch default) whereas the correct behaviour would be to use the default http/https port of 80/443. This behaviour has now been fixed, so sites running Elasticsearch on port 9200 must now specify this explicitly - e.g. http://localhost:9200. (Projects using the default settings, or the settings given in the Wagtail documentation, are unaffected.)

 Wagtail 0.8.1 release notes

Wagtail 0.8.1 release notes

	What’s new

What’s new

Bug fixes

	Fixed a regression where images would fail to save when feature detection is active

 Wagtail 0.8 release notes

Wagtail 0.8 release notes

	What’s new

	Upgrade considerations

Wagtail 0.8 is designated a Long Term Support (LTS) release. Long Term Support releases will continue to receive maintenance updates as necessary to address security and data-loss related issues, up until the next LTS release (typically a period of 8 months).

What’s new

Minor features

	Page operations (creation, publishing, copying etc) are now logged via Python’s logging framework; to configure this, add a logger entry for 'wagtail' or 'wagtail.core' to the LOGGING setup in your settings file.

	The save button on the page edit page now redirects the user back to the edit page instead of the explorer

	Signal handlers for wagtail.wagtailsearch and wagtail.contrib.wagtailfrontendcache are now automatically registered when using Django 1.7 or above.

	Added a Django 1.7 system check to ensure that foreign keys from Page models are set to on_delete=SET_NULL, to prevent inadvertent (and tree-breaking) page deletions

	Improved error reporting on image upload, including ability to set a maximum file size via a new setting WAGTAILIMAGES_MAX_UPLOAD_SIZE

	The external image URL generator now keeps persistent image renditions, rather than regenerating them on each request, so it no longer requires a front-end cache.

	Added Dutch translation

Bug fixes

	Replaced references of .username with .get_username() on users for better custom user model support

	Unpinned dependency versions for six and requests to help prevent dependency conflicts

	Fixed TypeError when getting embed HTML with oembed on Python 3

	Made HTML whitelisting in rich text fields more robust at catching disallowed URL schemes such as jav\tascript:

	created_at timestamps on page revisions were not being preserved on page copy, causing revisions to get out of sequence

	When copying pages recursively, revisions of sub-pages were being copied regardless of the copy_revisions flag

	Updated the migration dependencies within the project template to ensure that Wagtail’s own migrations consistently apply first

	The cache of site root paths is now cleared when a site is deleted

	Search indexing now prevents pages from being indexed multiple times, as both the base Page model and the specific subclass

	Search indexing now avoids trying to index abstract models

	Fixed references to “username” in login form help text for better custom user model support

	Later items in a model’s search_field list now consistently override earlier items, allowing subclasses to redefine rules from the parent

	Image uploader now accepts JPEG images that PIL reports as being in MPO format

	Multiple checkbox fields on form-builder forms did not correctly save multiple values

	Editing a page’s slug and saving it without publishing could sometimes cause the URL paths of child pages to be corrupted

	latest_revision_created_at was being cleared on page publish, causing the page to drop to the bottom of explorer listings

	Searches on partial_match fields were wrongly applying prefix analysis to the search query as well as the document (causing e.g. a query for “water” to match against “wagtail”)

Upgrade considerations

Corrupted URL paths may need fixing

This release fixes a bug in Wagtail 0.7 where editing a parent page’s slug could cause the URL paths of child pages to become corrupted. To ensure that your database does not contain any corrupted URL paths, it is recommended that you run ./manage.py set_url_paths after upgrading.

Automatic registration of signal handlers (Django 1.7+)

Signal handlers for the wagtailsearch core app and wagtailfrontendcache contrib app are automatically registered when using Django 1.7. Calls to register_signal_handlers from your urls.py can be removed.

Change to search API when using database backend

When using the database backend, calling search (either through Page.objects.search() or on the backend directly) will now return a SearchResults object rather than a Django QuerySet to make the database backend work more like the Elasticsearch backend.

This change shouldn’t affect most people as SearchResults behaves very similarly to QuerySet. But it may cause issues if you are calling QuerySet specific methods after calling .search(). Eg: Page.objects.search("Hello").filter(foo="Bar") (in this case, .filter() should be moved before .search() and it would work as before).

Removal of validate_image_format from custom image model migrations (Django 1.7+)

If your project is running on Django 1.7, and you have defined a custom image model (by extending the wagtailimages.AbstractImage class), the migration that creates this model will probably have a reference to wagtail.wagtailimages.utils.validators.validate_image_format. This module has now been removed, which will cause manage.py migrate to fail with an ImportError (even if the migration has already been applied). You will need to edit the migration file to remove the line:

import wagtail.wagtailimages.utils.validators

and the validators attribute of the ‘file’ field - that is, the line:

('file', models.ImageField(upload_to=wagtail.wagtailimages.models.get_upload_to,
 width_field='width', height_field='height',
 validators=[wagtail.wagtailimages.utils.validators.validate_image_format],
 verbose_name='File')),

should become:

	(‘file’, models.ImageField(upload_to=wagtail.wagtailimages.models.get_upload_to,

	width_field=’width’, height_field=’height’, verbose_name=’File’)),

 Wagtail 0.7 release notes

Wagtail 0.7 release notes

	What’s new

	Upgrade considerations

What’s new

New interface for choosing image focal point

[image: ../_images/focal-point-adjustment.jpg]

When editing images, users can now specify a ‘focal point’ region that cropped versions of the image will be centred on. Previously the focal point could only be set automatically, through image feature detection.

Groups and Sites administration interfaces

[image: ../_images/editor-management.png]

The main navigation menu has been reorganised, placing site configuration options in a ‘Settings’ submenu. This includes two new items, which were previously only available through the Django admin backend: ‘Groups’, for setting up user groups with a specific set of permissions, and ‘Sites’, for managing the list of sites served by this Wagtail instance.

Page locking

[image: ../_images/page-locking.png]

Moderators and administrators now have the ability to lock a page, preventing further edits from being made to that page until it is unlocked again.

Minor features

	The content_type template filter has been removed from the project template, as the same thing can be accomplished with self.get_verbose_name|slugify.

	Page copy operations now also copy the page revision history.

	Page models now support a parent_page_types property in addition to subpage types, to restrict the types of page they can be created under.

	register_snippet can now be invoked as a decorator.

	The project template (used when running wagtail start) has been updated to Django 1.7.

	The ‘boost’ applied to the title field on searches has been reduced from 100 to 2.

	The type method of PageQuerySet (used to filter the QuerySet to a specific page type) now includes subclasses of the given page type.

	The update_index management command now updates all backends listed in WAGTAILSEARCH_BACKENDS, or a specific one passed on the command line, rather than just the default backend.

	The ‘fill’ image resize method now supports an additional parameter defining the closeness of the crop. See Using images in templates

	Added support for invalidating Cloudflare caches. See Frontend cache invalidator

	Pages in the explorer can now be ordered by last updated time.

Bug fixes

	The ‘wagtail start’ command now works on Windows and other environments where the django-admin.py executable is not readily accessible.

	The external image URL generator no longer stores generated images in Django’s cache; this was an unintentional side-effect of setting cache control headers.

	The Elasticsearch backend can now search QuerySets that have been filtered with an ‘in’ clause of a non-list type (such as a ValuesListQuerySet).

	Logic around the has_unpublished_changes flag has been fixed, to prevent issues with the ‘View draft’ button failing to show in some cases.

	It is now easier to move pages to the beginning and end of their section

	Image rendering no longer creates erroneous duplicate Rendition records when the focal point is blank.

Upgrade considerations

Addition of wagtailsites app

The Sites administration interface is contained within a new app, wagtailsites. To enable this on an existing Wagtail project, add the line:

'wagtail.wagtailsites',

to the INSTALLED_APPS list in your project’s settings file.

Title boost on search reduced to 2

Wagtail’s search interface applies a ‘boost’ value to give extra weighting to matches on the title field. The original boost value of 100 was found to be excessive, and in Wagtail 0.7 this has been reduced to 2. If you have used comparable boost values on other fields, to give them similar weighting to title, you may now wish to reduce these accordingly. See Indexing.

Addition of locked field to Page model

The page locking mechanism adds a locked field to wagtailcore.Page, defaulting to False. Any application code working with Page objects should be unaffected, but any code that creates page records using direct SQL, or within existing South migrations using South’s frozen ORM, will fail as this code will be unaware of the new database column. To fix a South migration that fails in this way, add the following line to the 'wagtailcore.page' entry at the bottom of the migration file:

'locked': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),

Update to focal_point_key field on custom Rendition models

The focal_point_key field on wagtailimages.Rendition has been changed to null=False, to fix an issue with duplicate renditions being created. If you have defined a custom Rendition model in your project (by extending the wagtailimages.AbstractRendition class), you will need to apply a migration to make the corresponding change on your custom model. Unfortunately neither South nor Django 1.7’s migration system are able to generate this automatically - you will need to customise the migration produced by ./manage.py schemamigration / ./manage.py makemigrations, using the wagtailimages migration as a guide:

	https://github.com/wagtail/wagtail/blob/master/wagtail/wagtailimages/south_migrations/0004_auto__chg_field_rendition_focal_point_key.py (for South / Django 1.6)

	https://github.com/wagtail/wagtail/blob/master/wagtail/wagtailimages/migrations/0004_make_focal_point_key_not_nullable.py (for Django 1.7)

 Wagtail 0.6 release notes

Wagtail 0.6 release notes

	What’s new

	Upgrade considerations

	Deprecated features

What’s new

Project template and start project command

Wagtail now has a basic project template built in to make starting new projects much easier.

To use it, install wagtail onto your machine and run wagtail start project_name.

Django 1.7 support

Wagtail can now be used with Django 1.7.

Minor features

	A new template tag has been added for reversing URLs inside routable pages. See The routablepageurl template tag.

	RoutablePage can now be used as a mixin. See wagtail.contrib.wagtailroutablepage.models.RoutablePageMixin.

	MenuItems can now have bundled JavaScript

	Added the register_admin_menu_item hook for registering menu items at startup. See Hooks

	Added a version indicator into the admin interface (hover over the wagtail to see it)

	Added Russian translation

Bug fixes

	Page URL generation now returns correct URLs for sites that have the main ‘serve’ view rooted somewhere other than ‘/’.

	Search results in the page chooser now respect the page_type parameter on PageChooserPanel.

	Rendition filenames are now prevented from going over 60 chars, even with a large focal_point_key.

	Child relations that are defined on a model’s superclass (such as the base Page model) are now picked up correctly by the page editing form, page copy operations and the replace_text management command.

	Tags on images and documents are now committed to the search index immediately on saving.

Upgrade considerations

All features deprecated in 0.4 have been removed

See: Deprecated features

Search signal handlers have been moved

If you have an import in your urls.py file like from wagtail.wagtailsearch import register_signal_handlers, this must now be changed to from wagtail.wagtailsearch.signal_handlers import register_signal_handlers

Deprecated features

	The wagtail.wagtailsearch.indexed module has been renamed to wagtail.wagtailsearch.index

 Wagtail 0.5 release notes

Wagtail 0.5 release notes

	What’s new

	Upgrade considerations

What’s new

Multiple image uploader

The image uploader UI has been improved to allow multiple images to be uploaded at once.

Image feature detection

Wagtail can now apply face and feature detection on images using OpenCV [http://opencv.org/], and use this to intelligently crop images.

Feature Detection

Using images outside Wagtail

In normal use, Wagtail will generate resized versions of images at the point that they are referenced on a template, which means that those images are not easily accessible for use outside of Wagtail, such as displaying them on external sites. Wagtail now provides a way to obtain URLs to your images, at any size.

Dynamic image serve view

RoutablePage

A RoutablePage model has been added to allow embedding Django-style URL routing within a page.

RoutablePageMixin

Usage stats for images, documents and snippets

It’s now easier to find where a particular image, document or snippet is being used on your site.

Set the WAGTAIL_USAGE_COUNT_ENABLED setting to True and an icon will appear on the edit page showing you which pages they have been used on.

Copy Page action

The explorer interface now offers the ability to copy pages, with or without subpages.

Minor features

Core

	Hooks can now be defined using decorator syntax:

@hooks.register('construct_main_menu')
def construct_main_menu(request, menu_items):
 menu_items.append(
 MenuItem('Kittens!', '/kittens/', classnames='icon icon-folder-inverse', order=1000)
)

	The lxml library (used for whitelisting and rewriting of rich text fields) has been replaced with the pure-python html5lib library, to simplify installation.

	A page_unpublished signal has been added.

Admin

	Explorer nav now rendered separately and fetched with AJAX when needed.

This improves the general performance of the admin interface for large sites.

Bug fixes

	Updates to tag fields are now properly committed to the database when publishing directly from the page edit interface.

Upgrade considerations

Urlconf entries for /admin/images/, /admin/embeds/ etc need to be removed

If you created a Wagtail project prior to the release of Wagtail 0.3, it is likely to contain the following entries in its urls.py:

TODO: some way of getting wagtailimages to register itself within wagtailadmin so that we
don't have to define it separately here
url(r'^admin/images/', include(wagtailimages_urls)),
url(r'^admin/embeds/', include(wagtailembeds_urls)),
url(r'^admin/documents/', include(wagtaildocs_admin_urls)),
url(r'^admin/snippets/', include(wagtailsnippets_urls)),
url(r'^admin/search/', include(wagtailsearch_admin_urls)),
url(r'^admin/users/', include(wagtailusers_urls)),
url(r'^admin/redirects/', include(wagtailredirects_urls)),

These entries (and the corresponding from wagtail.wagtail* import ... lines) need to be removed from urls.py. (The entry for /admin/ should be left in, however.)

Since Wagtail 0.3, the wagtailadmin module automatically takes care of registering these URL subpaths, so these entries are redundant, and these urlconf modules are not guaranteed to remain stable and backwards-compatible in future. Leaving these entries in place will now cause an ImproperlyConfigured exception to be thrown.

New fields on Image and Rendition models

Several new fields have been added to the Image and Rendition models to support Feature Detection. These will be added to the database when you run ./manage.py migrate. If you have defined a custom image model (by extending the wagtailimages.AbstractImage and wagtailimages.AbstractRendition classes and specifying WAGTAILIMAGES_IMAGE_MODEL in settings), the change needs to be applied to that model’s database table too. Running the command:

$./manage.py schemamigration myapp --auto add_image_focal_point_fields

(with ‘myapp’ replaced with your app name) will generate the necessary migration file.

South upgraded to 1.0

In preparation for Django 1.7 support in a future release, Wagtail now depends on South 1.0, and its migration files have been moved from migrations to south_migrations. Older versions of South will fail to find the migrations in the new location.

If your project’s requirements file (most commonly requirements.txt or requirements/base.txt) references a specific older version of South, this must be updated to South 1.0.

 Wagtail 0.4.1 release notes

Wagtail 0.4.1 release notes

Bug fixes

	ElasticSearch backend now respects the backward-compatible URLS configuration setting, in addition to HOSTS

	Documentation fixes

 Wagtail 0.4 release notes

Wagtail 0.4 release notes

	What’s new

	Backwards-incompatible changes

	Deprecated features

What’s new

Private Pages

Wagtail now supports password protecting pages on the frontend, allowing sections of your website to be made private.

Private pages

Python 3 support

Wagtail now supports Python 3.2, 3.3 and 3.4.

Scheduled publishing

Editors can now schedule pages to be published or unpublished at specified times.

A new management command has been added (publish_scheduled_pages) to publish pages that have been scheduled by an editor.

Search on QuerySet with Elasticsearch

It’s now possible to perform searches with Elasticsearch on PageQuerySet objects:

>>> from wagtail.core.models import Page
>>> Page.objects.live().descendant_of(events_index).search("Hello")
[<Page: Event 1>, <Page: Event 2>]

Sitemap generation

A new module has been added (wagtail.contrib.wagtailsitemaps) which produces XML sitemaps for Wagtail sites.

Sitemap generator

Front-end cache invalidation

A new module has been added (wagtail.contrib.wagtailfrontendcache) which invalidates pages in a frontend cache when they are updated or deleted in Wagtail.

Frontend cache invalidator

Notification preferences

Users can now decide which notifications they receive from Wagtail using a new “Notification preferences” section located in the account settings.

Minor features

Core

	Any extra arguments given to Page.serve are now passed through to get_context and get_template

	Added in_menu and not_in_menu methods to PageQuerySet

	Added search method to PageQuerySet

	Added get_next_siblings and get_prev_siblings to Page

	Added page_published signal

	Added copy method to Page to allow copying of pages

	Added construct_whitelister_element_rules hook for customising the HTML whitelist used when saving RichText fields

	Support for setting a subpage_types property on Page models, to define which page types are allowed as subpages

Admin

	Removed the “More” section from the menu

	Added pagination to page listings

	Added a new datetime picker widget

	Updated hallo.js to version 1.0.4

	Aesthetic improvements to preview experience

	Login screen redirects to dashboard if user is already logged in

	Snippets are now ordered alphabetically

	Added init_new_page signal

Search

	Added a new way to configure searchable/filterable fields on models

	Added get_indexed_objects allowing developers to customise which objects get added to the search index

	Major refactor of Elasticsearch backend

	Use match instead of query_string queries

	Fields are now indexed in Elasticsearch with their correct type

	Filter fields are no longer included in _all

	Fields with partial matching are now indexed together into _partials

Images

	Added original as a resizing rule supported by the {% image %} tag

	image tag now accepts extra keyword arguments to be output as attributes on the img tag

	Added an attrs property to image rendition objects to output src, width, height and alt attributes all in one go

Other

	Added styleguide, for Wagtail developers

Bug fixes

	Animated GIFs are now coalesced before resizing

	The Wand backend clones images before modifying them

	The admin breadcrumb is now positioned correctly on mobile

	The page chooser breadcrumb now updates the chooser modal instead of linking to Explorer

	Embeds - fixed crash when no HTML field is sent back from the embed provider

	Multiple sites with same hostname but different ports are now allowed

	It is no longer possible to create multiple sites with is_default_site = True

Backwards-incompatible changes

ElasticUtils replaced with elasticsearch-py

If you are using the Elasticsearch backend, you must install the elasticsearch module into your environment.

Note

If you are using an older version of Elasticsearch (< 1.0) you must install elasticsearch version 0.4.x.

Addition of expired column may break old data migrations involving pages

The scheduled publishing mechanism adds an expired field to wagtailcore.Page, defaulting to False. Any application code working with Page objects should be unaffected, but any code that creates page records using direct SQL, or within existing South migrations using South’s frozen ORM, will fail as this code will be unaware of the expired database column. To fix a South migration that fails in this way, add the following line to the 'wagtailcore.page' entry at the bottom of the migration file:

'expired': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),

Deprecated features

Template tag libraries renamed

The following template tag libraries have been renamed:

	pageurl => wagtailcore_tags

	rich_text => wagtailcore_tags

	embed_filters => wagtailembeds_tags

	image_tags => wagtailimages_tags

The old names will continue to work, but output a DeprecationWarning - you are advised to update any {% load %} tags in your templates to refer to the new names.

New search field configuration format

indexed_fields is now deprecated and has been replaced by a new search field configuration format called search_fields. See Indexing for how to define a search_fields property on your models.

Page.route method should now return a RouteResult

Previously, the route method called serve and returned an HttpResponse object. This has now been split up so serve is called separately and route must now return a RouteResult object.

If you are overriding Page.route on any of your page models, you will need to update the method to return a RouteResult object. The old method of returning an HttpResponse will continue to work, but this will throw a DeprecationWarning and bypass the before_serve_page hook, which means in particular that Private pages will not work on those page types. See Adding Endpoints with Custom route() Methods.

Wagtailadmins hooks module has moved to wagtailcore

If you use any wagtail_hooks.py files in your project, you may have an import like: from wagtail.wagtailadmin import hooks

Change this to: from wagtail.core import hooks

Miscellaneous

	Page.show_as_mode replaced with Page.serve_preview

	Page.get_page_modes method replaced with Page.preview_modes property

	Page.get_other_siblings replaced with Page.get_siblings(inclusive=False)

 Python Module Index

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wagtail	

 	
 	
 wagtail.admin.edit_handlers	

 	
 	
 wagtail.contrib.forms.edit_handlers	

 	
 	
 wagtail.contrib.frontend_cache.utils	

 	
 	
 wagtail.contrib.routable_page	

 	
 	
 wagtail.contrib.routable_page.models	

 	
 	
 wagtail.contrib.search_promotions	

 	
 	
 wagtail.core.models	

 	
 	
 wagtail.core.query	

 	
 	
 wagtail.documents	

 	
 	
 wagtail.documents.edit_handlers	

 	
 	
 wagtail.images	

 	
 	
 wagtail.images.edit_handlers	

 	
 	
 wagtail.snippets.edit_handlers	

 	
 	
 wagtail.tests.utils	

 	
 	
 wagtail.tests.utils.form_data	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_page() (wagtail.contrib.frontend_cache.utils.PurgeBatch method)

 	add_pages() (wagtail.contrib.frontend_cache.utils.PurgeBatch method)

 	add_url() (wagtail.contrib.frontend_cache.utils.PurgeBatch method)

 	add_urls() (wagtail.contrib.frontend_cache.utils.PurgeBatch method)

 	ancestor_of() (wagtail.core.query.PageQuerySet method)

 	approve_moderation() (wagtail.core.models.PageRevision method)

 	
 	as_page_object() (wagtail.core.models.PageRevision method)

 	assertAllowedParentPageTypes() (wagtail.tests.utils.WagtailPageTests method)

 	assertAllowedSubpageTypes() (wagtail.tests.utils.WagtailPageTests method)

 	assertCanCreate() (wagtail.tests.utils.WagtailPageTests method)

 	assertCanCreateAt() (wagtail.tests.utils.WagtailPageTests method)

 	assertCanNotCreateAt() (wagtail.tests.utils.WagtailPageTests method)

 	author_name (wagtail.embeds.models.Embed attribute)

B

 	
 	base.py

 	
 	base_form_class (wagtail.core.models.Page attribute)

C

 	
 	can_create_at() (wagtail.core.models.Page class method)

 	can_exist_under() (wagtail.core.models.Page class method)

 	can_move_to() (wagtail.core.models.Page method)

 	child_of() (wagtail.core.query.PageQuerySet method)

 	children (wagtail.admin.edit_handlers.FieldRowPanel attribute)

 	(wagtail.admin.edit_handlers.MultiFieldPanel attribute)

 	classname (wagtail.admin.edit_handlers.FieldPanel attribute)

 	(wagtail.admin.edit_handlers.FieldRowPanel attribute)

 	(wagtail.admin.edit_handlers.HelpPanel attribute)

 	(wagtail.admin.edit_handlers.StreamFieldPanel.FieldPanel attribute)

 	
 	content (wagtail.admin.edit_handlers.HelpPanel attribute)

 	content_json (wagtail.core.models.PageRevision attribute)

 	content_type (wagtail.core.models.Page attribute)

 	created_at (wagtail.core.models.PageRevision attribute)

D

 	
 	descendant_of() (wagtail.core.query.PageQuerySet method)

 	detail_url (string)

 	
 	dev.py

 	DocumentChooserPanel (class in wagtail.documents.edit_handlers)

 	draft_title (wagtail.core.models.Page attribute)

E

 	
 	exact_type() (wagtail.core.query.PageQuerySet method)

 	
 	exclude_fields_in_copy (wagtail.core.models.Page attribute)

 	expand_db_attributes() (LinkHandler method)

F

 	
 	Feature release

 	field_name (wagtail.admin.edit_handlers.FieldPanel attribute)

 	(wagtail.admin.edit_handlers.StreamFieldPanel.FieldPanel attribute)

 	FieldPanel (class in wagtail.admin.edit_handlers)

 	FieldRowPanel (class in wagtail.admin.edit_handlers)

 	fill

 	
 	find_for_request() (wagtail.core.models.Site static method)

 	first_common_ancestor() (wagtail.core.query.PageQuerySet method)

 	first_published_at (wagtail.core.models.Page attribute)

 	FormSubmissionsPanel (class in wagtail.contrib.forms.edit_handlers)

 	Full width

 	full_url (wagtail.core.models.Page attribute)

G

 	
 	get_admin_display_title() (wagtail.core.models.Page method)

 	get_ancestors() (wagtail.core.models.Page method)

 	get_context() (wagtail.core.models.Page method)

 	get_converter_rule() (FeatureRegistry method)

 	get_descendants() (wagtail.core.models.Page method)

 	get_document_model() (in module wagtail.documents)

 	get_document_model_string() (in module wagtail.documents)

 	get_editor_plugin() (FeatureRegistry method)

 	get_image_model() (in module wagtail.images)

 	get_image_model_string() (in module wagtail.images)

 	get_instance() (LinkHandler method)

 	
 	get_model() (LinkHandler method)

 	get_parent() (wagtail.core.models.Page method)

 	get_siblings() (wagtail.core.models.Page method)

 	get_site() (wagtail.core.models.Page method)

 	get_site_root_paths() (wagtail.core.models.Site static method)

 	get_subpage_urls() (wagtail.contrib.routable_page.models.RoutablePageMixin class method)

 	get_template() (wagtail.core.models.Page method)

 	get_url() (wagtail.core.models.Page method)

 	get_url_parts() (wagtail.core.models.Page method)

 	group (wagtail.core.models.GroupPagePermission attribute)

 	GroupPagePermission (class in wagtail.core.models)

H

 	
 	has_unpublished_changes (wagtail.core.models.Page attribute)

 	heading (wagtail.admin.edit_handlers.HelpPanel attribute)

 	(wagtail.admin.edit_handlers.MultiFieldPanel attribute)

 	height

 	
 	height (number)

 	height (wagtail.embeds.models.Embed attribute)

 	HelpPanel (class in wagtail.admin.edit_handlers)

 	hostname (wagtail.core.models.Site attribute)

 	html (wagtail.embeds.models.Embed attribute)

I

 	
 	id (number)

 	identifier (LinkHandler attribute)

 	ImageChooserPanel (class in wagtail.images.edit_handlers)

 	in_menu() (wagtail.core.query.PageQuerySet method)

 	in_site() (wagtail.core.query.PageQuerySet method)

 	
 	inline_formset() (in module wagtail.tests.utils.form_data)

 	InlinePanel (class in wagtail.admin.edit_handlers)

 	is_creatable (wagtail.core.models.Page attribute)

 	is_default_site (wagtail.core.models.Site attribute)

 	is_latest_revision() (wagtail.core.models.PageRevision method)

L

 	
 	last_published_at (wagtail.core.models.Page attribute)

 	last_updated (wagtail.embeds.models.Embed attribute)

 	Left-aligned

 	LinkHandler (built-in class)

 	live (wagtail.core.models.Page attribute)

 	
 	live() (wagtail.core.query.PageQuerySet method)

 	local.py

 	locked (wagtail.core.models.Page attribute)

 	locked_at (wagtail.core.models.Page attribute)

 	locked_by (wagtail.core.models.Page attribute)

 	Long-term support release

M

 	
 	max

 	max_count (wagtail.core.models.Page attribute)

 	max_count_per_parent (wagtail.core.models.Page attribute)

 	max_width (wagtail.embeds.models.Embed attribute)

 	meta.download_url (string)

 	meta.first_published_at (date/time)

 	meta.html_url (string)

 	
 	meta.parent

 	meta.search_description (string)

 	meta.seo_title (string)

 	meta.show_in_menus (boolean)

 	meta.slug (string)

 	meta.tags (list of strings), [1]

 	min

 	MultiFieldPanel (class in wagtail.admin.edit_handlers)

N

 	
 	nested_form_data() (in module wagtail.tests.utils.form_data)

 	not_ancestor_of() (wagtail.core.query.PageQuerySet method)

 	not_child_of() (wagtail.core.query.PageQuerySet method)

 	not_descendant_of() (wagtail.core.query.PageQuerySet method)

 	not_exact_type() (wagtail.core.query.PageQuerySet method)

 	not_in_menu() (wagtail.core.query.PageQuerySet method)

 	
 	not_live() (wagtail.core.query.PageQuerySet method)

 	not_page() (wagtail.core.query.PageQuerySet method)

 	not_parent_of() (wagtail.core.query.PageQuerySet method)

 	not_public() (wagtail.core.query.PageQuerySet method)

 	not_sibling_of() (wagtail.core.query.PageQuerySet method)

 	not_type() (wagtail.core.query.PageQuerySet method)

O

 	
 	objects (wagtail.core.models.PageRevision attribute)

 	Orderable (class in wagtail.core.models)

 	
 	original

 	owner (wagtail.core.models.Page attribute)

P

 	
 	Page (class in wagtail.core.models), [1]

 	page (wagtail.core.models.GroupPagePermission attribute)

 	(wagtail.core.models.PageRevision attribute)

 	(wagtail.core.models.PageViewRestriction attribute)

 	page() (wagtail.core.query.PageQuerySet method)

 	PageChooserPanel (class in wagtail.admin.edit_handlers)

 	PageQuerySet (class in wagtail.core.query)

 	PageRevision (class in wagtail.core.models), [1], [2]

 	PageViewRestriction (class in wagtail.core.models)

 	parent_of() (wagtail.core.query.PageQuerySet method)

 	parent_page_types (wagtail.core.models.Page attribute)

 	
 	password (wagtail.core.models.PageViewRestriction attribute)

 	password_required_template (wagtail.core.models.Page attribute)

 	Patch release

 	permission_type (wagtail.core.models.GroupPagePermission attribute)

 	port (wagtail.core.models.Site attribute)

 	preview_modes (wagtail.core.models.Page attribute)

 	production.py

 	provider_name (wagtail.embeds.models.Embed attribute)

 	public() (wagtail.core.query.PageQuerySet method)

 	publish() (wagtail.core.models.PageRevision method)

 	purge() (wagtail.contrib.frontend_cache.utils.PurgeBatch method)

 	PurgeBatch (class in wagtail.contrib.frontend_cache.utils)

R

 	
 	register_converter_rule() (FeatureRegistry method)

 	register_editor_plugin() (FeatureRegistry method)

 	register_embed_type() (FeatureRegistry method)

 	register_link_type() (FeatureRegistry method)

 	reject_moderation() (wagtail.core.models.PageRevision method)

 	relative_url() (wagtail.core.models.Page method)

 	resolve_subpage() (wagtail.contrib.routable_page.models.RoutablePageMixin method)

 	
 	reverse_subpage() (wagtail.contrib.routable_page.models.RoutablePageMixin method)

 	rich_text() (in module wagtail.tests.utils.form_data)

 	Right-aligned

 	root_page (wagtail.core.models.Site attribute)

 	root_url (wagtail.core.models.Site attribute)

 	RoutablePageMixin (class in wagtail.contrib.routable_page.models)

 	routablepageurl() (in module wagtail.contrib.routable_page.templatetags.wagtailroutablepage_tags)

 	route() (wagtail.core.models.Page method)

S

 	
 	scale

 	search() (wagtail.core.query.PageQuerySet method)

 	search_description (wagtail.core.models.Page attribute)

 	search_fields (wagtail.core.models.Page attribute)

 	seo_title (wagtail.core.models.Page attribute)

 	serve() (wagtail.core.models.Page method)

 	serve_preview() (wagtail.core.models.Page method)

 	show_in_menus (wagtail.core.models.Page attribute)

 	sibling_of() (wagtail.core.query.PageQuerySet method)

 	Site (class in wagtail.core.models), [1]

 	site_name (wagtail.core.models.Site attribute)

 	
 	slug (wagtail.core.models.Page attribute)

 	SnippetChooserPanel (class in wagtail.snippets.edit_handlers)

 	sort_order (wagtail.core.models.Orderable attribute)

 	specific (wagtail.core.models.Page attribute)

 	specific() (wagtail.core.query.PageQuerySet method)

 	specific_class (wagtail.core.models.Page attribute)

 	streamfield() (in module wagtail.tests.utils.form_data)

 	StreamFieldPanel (class in wagtail.admin.edit_handlers)

 	submitted_for_moderation (wagtail.core.models.PageRevision attribute)

 	submitted_revisions (wagtail.core.models.PageRevision attribute)

 	subpage_types (wagtail.core.models.Page attribute)

T

 	
 	template (wagtail.admin.edit_handlers.HelpPanel attribute)

 	thumbnail_url (wagtail.embeds.models.Embed attribute)

 	title (string), [1], [2]

 	title (wagtail.core.models.Page attribute)

 	(wagtail.embeds.models.Embed attribute)

 	
 	type (string)

 	(wagtail.embeds.models.Embed attribute)

 	type() (wagtail.core.query.PageQuerySet method)

U

 	
 	unpublish() (wagtail.core.query.PageQuerySet method)

 	
 	url (wagtail.embeds.models.Embed attribute)

 	user (wagtail.core.models.PageRevision attribute)

W

 	
 	wagtail.admin.edit_handlers (module)

 	wagtail.admin.forms.WagtailAdminModelForm (built-in class)

 	wagtail.admin.forms.WagtailAdminPageForm (built-in class)

 	wagtail.contrib.forms.edit_handlers (module)

 	wagtail.contrib.frontend_cache.utils (module)

 	wagtail.contrib.routable_page (module)

 	wagtail.contrib.routable_page.models (module)

 	wagtail.contrib.search_promotions (module)

 	wagtail.core.models (module)

 	wagtail.core.query (module)

 	wagtail.documents (module)

 	wagtail.documents.edit_handlers (module)

 	
 	wagtail.embeds.models.Embed (built-in class)

 	wagtail.images (module)

 	wagtail.images.edit_handlers (module)

 	wagtail.snippets.edit_handlers (module)

 	wagtail.tests.utils (module)

 	wagtail.tests.utils.form_data (module)

 	WagtailPageTests (class in wagtail.tests.utils)

 	widget (wagtail.admin.edit_handlers.FieldPanel attribute)

 	width

 	width (number)

 	width (wagtail.embeds.models.Embed attribute)

 	with_content_json() (wagtail.core.models.Page method)

_static/comment-bright.png

_images/userbar-corner.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/tutorial_8.png
©® O © /g wagtail - Editing Blog Page: < x e

< C | ® 127.0.0.1:8000/admin/pages/6/edit/ *| 8 A 6 O
CONTENT PROMOTE £ SETTINGS

TITLE *

Second Post
Explorer

Images

BLOG INFORMATION
Documents

¢ Settings
Post date: *

INTRO *

_images/tutorial_9.png
-

‘ ® © ® [Tags Used in Our Blog x \\
* © 4« 00¢

& © ‘ ® 127.0.0.1:8000/tags/?tag=bicycles

Showing pages tagged "bicycles"

First Post
Revised: Oct. 27,2016, 12:40 a.m.

Third Post
Revised: Oct. 27,2016, 12:03 a.m.

_images/tutorial_6.jpg
® O ® /[second Post x

& C | ® 127.0.0.1:8000/blog/second-post/

Second Post

Nov. 1,2016

Something something something

Some stone sheep

Return to blog

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrad
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute inure dolor in reprehenderit in voluptate velit esse cilium dolore u fugiat nulla

‘pariatur, Excepteur sint occaecat cupidatat no proident, sunt in culpa qui officia deserunt moilist anim id est laborum.

Cauldron Snout High Cup

_images/tutorial_7.png
[BN Our Blog X CCA
&« C ® 127.0.0.1:8000/blog/ * @ % S

Our Blog

Everything we think about everything.

First Post

Introducing this topic...

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Second Post

Something something something

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Third Post

The intro

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nos
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pe
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

_images/screen17_upload_image.png
CHOOSE AN IMAGE

SEARCH UPLOAD

Title:

Another awesome Wagtail!

File:

[Choose Fite | No file chosen

_images/screen18_image_format.png
CHOOSE A FORMAT

Format:

® Full width
Left-aligned

Right-aligned
Alt text:

Grey wagtail by Lip Kee

INSERT IMAGE

_images/screen14_add_main_image.png
TmE *

(@) The page ttle as youd like it
tobe seen by the public

A standard page

MAIN IMAGE

CHOOSE AN IMAGE

CREDIT

_images/screen16_selecting_image_from_library.png
[za] CHOOSE AN IMAGE

UPLOAD

Search term:

SEARCH

Pnpu\artau

S Wallpaper

LATEST IMAGES

TED*Amsterdam

_images/screen21_video_in_editor.png
H2 H3 H4

_images/screen22_required_field.png
TITLE: *

The title is required||

_images/screen19_link_form.png
B CHOOSE A PAGE

Internal link | Externallink | Email link
EXPLORER

& > romepage >

e e staTUs
Standard

Schools & Programmes . o

School of Architecture School UvE >
Page

School of Communication School >
Page —

_images/screen20_insert_video_form.png
INSERT EMBED

URL: ‘ https://vimeo.com/86036070

INSERT

_images/screen23_validation_error.png
jue to vali

—_1n
CONTENT PROMOTE m

I T ¢

“Thisfield is required.

_images/screen24_multiple_items_closed.png
! e L

_images/screen27_docs_icon.png

_images/screen28_docs_form.png
B} CHOOSE ADOCUMENT

SEARCH UPLOAD

Search term: Search

Al collections

Collection:
LATEST DOCUMENTS
TTLE - FILE UPLOADED
THE-SEPARATION-OF-WHITE-AND-PIED- T

THE-SEPARATION-OF-WHITE-AND-PIED-

WAGTAILS.pdf WAGTAILS paf

Page10f1.

_images/screen26.5_promote_tab.png
CONTENT PROMOTE £ SETTINGS

COMMON PAGE CONFIGURATION

Slug: * drupal-8-your-guide-views-core

The name of the page as it wil appear in URLS . htp://domain.com/blog/Tmy-slugl/

Page title:

Optional. ‘Search Engine Friendly'tile. This will appear at the top of the browser window.

Show in menus:

Whether a ink to this page will appear in automaticaly generated menus

Search description:

_images/screen26_reordering_multiple_items.png
Link: Homepage

CLEARCHOICE | [CHOOSE ANOTHER PAGE

_images/screen31_images_page.png
LATEST IMAGES

“The best Wagtaill Grey wagtail by Lip Kee Wagtail collects insects by Margrit Hopalong wagtail by Ruth Fickr

Wagtail at Borovoye, Kazakhstan by Pied wagtail by Marie Hale White wagtail by Koshy Koshy
Ken and Nyetta

Wagtail Sproing by Jim Bendon

_images/screen32_image_edit_page.png
1time

(&) EDITING django_upgraded.jpg

Focal point (optional)

Title: django_upgraded jpg To define this image's most important region, drag a box over the image 1548908
below.

& django_upgraded.jpg (1548x908) 650.4 kB
File:

Change image file

Ghoosa File | NO file chosen

Supported formats: GIF, JPEG, PNG. Maximum fsize; 100 MB
Credit: Gordon Tarpley htps://www flickr.com/photos/
Tags:

SAVE

_images/screen29_documents_page.png
+ ADDADOCUMENT

Collection: All collections

TITLE

VALIS Risk Analysis Information Pack

Special Project Coordinator Info Pack

Senior Tutor in Printed Textiles Information Pack

Senior Tutor in Mixed Media Information Pack

FILE

VALIS_Risk_Analysis_Information_Pack.pdf

Special_Project_Coordinator_Info_Pack.pdf

Senior_Tutor_in_Printed_Textiles_Information_Pack.pdf

Senior_Tutor_in_Mixed_Media_Information_Pack.pdf

COLLECTION

Info Packs

Info Packs

Info Packs

Root

CREATED

2 months, 2 days ago

2 months, 2 weeks ago

2 months, 2 weeks ago

5 months, 1 week ago

_images/screen30_documents_edit_page.png
B EDITING TPS Guidelines Original

FILESIZE

Title: * TPS Guidelines 933 KB

B TPS_REPORT_FULL_GUIDELINES.pdf

File: *
Change document:
Browse... No file selected.
Collection: * Other

SAVE DELETE DOCUMENT

_images/screen33_snippet_menu.png
0y SNIPPETS

Adverts Boned textlinks displayed inth sidebar. Applied goballyor o individual pages. Usable o al pages.
Contact snippets Displayed in main body. Usable on standard ndex page only.
Custom content modules Navigational content orindex pages. A seres of mages inraws of three withtes and ks, displayed in main bocy. Usable

only on standard index page:

Reusable text snippets i txt ik with . Displayed n mai body.Usabl oy on standard page and o page.

_images/screen25_multiple_items_open.png
RELATED LINKS

Link: CHOOSE A PAGE

External hitp:/Awww.thelink com
link:
Link text: The first link

Link title (or leave blank to use page ttle

+ ADDRELATED LINKS

_images/screen38.5_popular_search_results.png
POPULAR SEARCH TERMS

Search term: Search
cambodia 116
oil 78
blood diamonds 75
angola 64
conflict diamonds 62
santander 62
brazil 51

sierra leone 29

_images/screen38_promoted_results_listing.png
Y PROMOTED SEARCH RESULTS 4 ADD NEW PROMOTED RESULT

‘SEARCH TERMIS) PROMOTED RESULTS. VIEWS (PAST WEEK)

turkmenistan gas Turkmenistan, Its A Gas, All That Gas? 0

; Wil St Shine for South Sudan?, Blueprint or Prosperity, Three years in, is
south sudan oil o Pty Threey:

2
South Sudan's ol criving its crisis?
South Sudan, Willtar Shine for South Sudan? , Blugprint o Prosperity .

south sudan P perty 13
Fueling Mistrust

cambodia oil Country For Sale 3

Surrey Mansion Used To Hide Suspect Funds, Former Kyrgyz presidents
blood red carpet sonives in £3.5m Surrey mansion despite convictions for attempted 2
murder of UK citizen and grand corruption at home

_images/screen36_users_interface.png
+

ADD A USER

NAME

jamesg

@ relicity
Edward Baldry
Ged Barker

Glenn Barr

USERNAME -

jamesg

felcity

eddbaldry

ged.barker

glenn.barr

LEvEL

Admin

Admin

Admin

Admin

STATUS

Acve

Acve

Acve

Acve

Acve

_images/screen37_promoted_menu_item.png
Search

= Explorer
@ images
B Documents
@, Snippets

2 Settings

Settings
& Users
& Groups
4 Redirects

% Promoted search
resuts

_images/screen40_table_block1.png
Pages

Images

Documents

Settings

some clothes

TABLE

Row header

Column header

Table caption

shoes

SAVE DRAFT

v

Display the first row as a header.

Display the first column as a header.

Clothing table

n reader

Display caption for user with s

shirt

Insert row above
Insert row below
Insert column left
Insert column right
Remove rows

Remove columns

N @ PREVIEW.

pants

TABLE

®

_images/screen41_redirects_menu_item.png
& Explorer

Post

News

ges
B Documents

o Settings

Settings

& Users

L3

Groups
Q@ sites
& Collections

4 Redirects

_images/screen39_add_promoted_result.png
v ADD EDITOR'S PICK

@ Promoted search results are a means of recommending specific pages that might not organically come high up in search results. E.g recommending your primary donation page to a
user searching with the less common term "giving".

The "Search term(s)/phrase" field below must contain the full and exact search for which you wish to provide recommended results, including any misspellings/user error. To help,
you can choose from search terms that have been popular with users of your site.

CHOOSE FROM POPULAR SEARCH TERMS

Enter the fullsearch string to match. An exact match is required for your Editors Picks to be displayed, wildcards are NOT allowed.

Page: ‘CHOOSE APAGE

Description:

+ ADDRECOMMENDED PAGE

SAVE

_images/screen40_table_block.png
Pages

Images

Documents

Settings

some clothes

TABLE

Row header

Column header

Table caption

shoes

SAVE DRAFT

v

Display the first row as a header.

Display the first column as a header.

Clothing table

n reader

Display caption for user with s

shirt

Insert row above
Insert row below
Insert column left
Insert column right
Remove rows

Remove columns

N @ PREVIEW.

pants

TABLE

®

_images/screen34_snippet_used_times.png
TITLE:

_images/screen35_users_menu_item.png
5 Explorer
&) Images
B Documents
0, Snippets

% Settings

& Users

Groups

4 Redirects

% Promoted search
results

_images/tutorial_2.png
o0 e |] Wagtail - Dashboard x

L C' [127.0.0.1:8000/admin/

»

Explorer

Images

Documents

Settings

admin

< Logout

_images/tutorial_3.png
o0 e | ') Homepage x\@
€ & C []127.0.0.1:8000 B & RIS

‘Welcome to our new site!

_images/tutorial_10.jpg
®©® [y secondPost x e

C | ® 127.0.0.1:8000/blog/second-post/

Second Post

Nov. 1,2016

Posted in:

@ Places @ Events

Something something something

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrad
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute inure dolor in reprehenderit in voluptate velit esse clium dolore eu fugiat nulla
‘pariatur. Excepteur sint occaecat cupidatat no proident, sunt in culpa qui officia deserunt moilist anim id est laborum.

Some stone sheep Cauldron Snout High Cup

_images/tutorial_11.png
<« c @ ® 127.00.1:8000 @ %) | Q search N @

’Awagtail View the release notes

Welcome to your new Wagtail site!

Please feel free to join our community on Slack, or get
started with one of the links below.

9 Wagtail Documentation < Tutorial = Admin Interface
Topics, references, & how-tos Build your first Wagtail site Create your superuser first!

_images/tutorial_5.png
® ® ® /| Wagtail - Editing Blog Pag- x

& C' [} 127.0.0.1:8000/admin/pages/4/edit/ [] »

TITLE: *

First blog post

Explorer
POST DATE: *
Images

B Documents 2015-05-14

Settings

INTRO: *

Hello world!

B H2 H3 H4 H5 = i D C % B @ ©
ll.orem ipsum dolorsit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
Site Admin dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex

< Logout SAVE DRAFT @ PREVIEW Last modified: 14 May 2015, 10:42 a.m. by Site Admin o\

_images/tutorial_4a.png
% Explorer

Ga) Images

|

1

~ Homepage

o we [+ socmome

TITLE

First Post

1 day, 22 hours
ago

TYPE

Blog Page

LIVE

STATUS

LIVE

Privacy

PUBLIC

_images/tutorial_4b.png
Choose which type of page you'd like to create.

Pages using Blog Index Page

Explorer

Pages using Blog Page

Images

Pages using Home Page

Documents

Settings

_images/screen43_redirects_edit_redirect.png
«1 EDITING /ni

Redirect from: * /about/news

From site: Your Site [default]

Permanent: v
Recommended. Permanent redirects ensure search engines forget the ld page (e ‘Redirect fom) and index the new page
instead.

Redirect to a News

page:

[(ctemcronce] [[croose Anomew page | ((Eoim T phce

Redirect to any
URL:

DELETE REDIRECT

_images/tutorial_1.png
<« c @ ® 127.00.1:8000 @ %) | Q search N @

’Awagtail View the release notes

Welcome to your new Wagtail site!

Please feel free to join our community on Slack, or get
started with one of the links below.

9 Wagtail Documentation < Tutorial = Admin Interface
Topics, references, & how-tos Build your first Wagtail site Create your superuser first!

_images/screen42_redirects_interface.png
1 REDIRECTS + ADDREDIRECT

#ROM sme T TveE
Inew Your Site [default News PERMANENT
Inews/a-new-item-which-is-no-longer-available Your Site [default hutp://www.example.com PERMANENT

Page10f 1.

nav.xhtml

 Table of Contents

 		
 Welcome to Wagtail’s documentation

 		
 Getting started

 		
 Your first Wagtail site

 		
 Demo site

 		
 Integrating Wagtail into a Django project

 		
 The Zen of Wagtail

 		
 Usage guide

 		
 Page models

 		
 Writing templates

 		
 Using images in templates

 		
 Search

 		
 Indexing

 		
 Searching

 		
 Backends

 		
 Snippets

 		
 Freeform page content using StreamField

 		
 Permissions

 		
 Advanced topics

 		
 Images

 		
 Generating renditions in Python

 		
 Animated GIF support

 		
 Image file formats

 		
 Custom image models

 		
 Changing rich text representation

 		
 Feature Detection

 		
 Dynamic image serve view

 		
 Documents

 		
 Custom document model

 		
 Embedded content

 		
 How to add Wagtail into an existing Django project

 		
 Deploying Wagtail

 		
 Performance

 		
 Private pages

 		
 Customising Wagtail

 		
 Customising the editing interface

 		
 Rich text internals

 		
 Extending the Draftail Editor

 		
 Extending the Hallo Editor

 		
 Customising admin templates

 		
 Custom user models

 		
 Third-party tutorials

 		
 Jinja2 template support

 		
 Testing your Wagtail site

 		
 Wagtail API

 		
 Wagtail API v2 Configuration Guide

 		
 Wagtail API v2 Usage Guide

 		
 Building a site with AMP support

 		
 Reference

 		
 Pages

 		
 Theory

 		
 Recipes

 		
 Available panel types

 		
 Model Reference

 		
 Page QuerySet reference

 		
 Contrib modules

 		
 Site settings

 		
 Form builder

 		
 Sitemap generator

 		
 Frontend cache invalidator

 		
 RoutablePageMixin

 		
 ModelAdmin

 		
 PostgreSQL search engine

 		
 Promoted search results

 		
 TableBlock

 		
 Management commands

 		
 Hooks

 		
 Signals

 		
 Settings

 		
 The project template

 		
 Support

 		
 Using Wagtail: an Editor’s guide

 		
 Introduction

 		
 Getting started

 		
 Finding your way around

 		
 The Dashboard

 		
 The Explorer menu

 		
 Using search

 		
 The Explorer page

 		
 Creating new pages

 		
 Selecting a page type

 		
 Creating page body content

 		
 Inserting images and videos in a page

 		
 Inserting links in a page

 		
 Inserting videos into body content

 		
 Inserting links to documents into body text

 		
 Adding multiple items

 		
 Required fields

 		
 Edit Page tabs

 		
 Previewing and submitting pages for moderation

 		
 Editing existing pages

 		
 Managing documents, images, snippets and collections

 		
 Documents

 		
 Images

 		
 Snippets

 		
 Collections

 		
 Managing Redirects

 		
 Administrator tasks

 		
 Managing users and roles

 		
 Promoted search results

 		
 Browser issues

 		
 Contributing to Wagtail

 		
 Issue tracking

 		
 Development

 		
 Committing code

 		
 UI Styleguide

 		
 General coding guidelines

 		
 Python coding guidelines

 		
 HTML coding guidelines

 		
 CSS coding guidelines

 		
 JavaScript coding guidelines

 		
 Wagtail’s release process

 		
 Release notes

 		
 Upgrading Wagtail

 		
 Wagtail 2.8 release notes

 		
 Wagtail 2.7.1 release notes

 		
 Wagtail 2.7 release notes

 		
 Wagtail 2.6.3 release notes

 		
 Wagtail 2.6.2 release notes

 		
 Wagtail 2.6.1 release notes

 		
 Wagtail 2.6 release notes

 		
 Wagtail 2.5.2 release notes

 		
 Wagtail 2.5.1 release notes

 		
 Wagtail 2.5 release notes

 		
 Wagtail 2.4 release notes

 		
 Wagtail 2.3 release notes

 		
 Wagtail 2.2.2 release notes

 		
 Wagtail 2.2.1 release notes

 		
 Wagtail 2.2 release notes

 		
 Wagtail 2.1.3 release notes

 		
 Wagtail 2.1.2 release notes

 		
 Wagtail 2.1.1 release notes

 		
 Wagtail 2.1 release notes

 		
 Wagtail 2.0.2 release notes

 		
 Wagtail 2.0.1 release notes

 		
 Wagtail 2.0 release notes

 		
 Wagtail 1.13.4 release notes

 		
 Wagtail 1.13.3 release notes

 		
 Wagtail 1.13.2 release notes

 		
 Wagtail 1.13.1 release notes

 		
 Wagtail 1.13 release notes

 		
 Wagtail 1.12.6 release notes

 		
 Wagtail 1.12.5 release notes

 		
 Wagtail 1.12.4 release notes

 		
 Wagtail 1.12.3 release notes

 		
 Wagtail 1.12.2 release notes

 		
 Wagtail 1.12.1 release notes

 		
 Wagtail 1.12 release notes

 		
 Wagtail 1.11.1 release notes

 		
 Wagtail 1.11 release notes

 		
 Wagtail 1.10.1 release notes

 		
 Wagtail 1.10 release notes

 		
 Wagtail 1.9.1 release notes

 		
 Wagtail 1.9 release notes

 		
 Wagtail 1.8.2 release notes

 		
 Wagtail 1.8.1 release notes

 		
 Wagtail 1.8 release notes

 		
 Wagtail 1.7 release notes

 		
 Wagtail 1.6.3 release notes

 		
 Wagtail 1.6.2 release notes

 		
 Wagtail 1.6.1 release notes

 		
 Wagtail 1.6 release notes

 		
 Wagtail 1.5.3 release notes

 		
 Wagtail 1.5.2 release notes

 		
 Wagtail 1.5.1 release notes

 		
 Wagtail 1.5 release notes

 		
 Wagtail 1.4.6 release notes

 		
 Wagtail 1.4.5 release notes

 		
 Wagtail 1.4.4 release notes

 		
 Wagtail 1.4.3 release notes

 		
 Wagtail 1.4.2 release notes

 		
 Wagtail 1.4.1 release notes

 		
 Wagtail 1.4 release notes

 		
 Wagtail 1.3.1 release notes

 		
 Wagtail 1.3 release notes

 		
 Wagtail 1.2 release notes

 		
 Wagtail 1.1 release notes

 		
 Wagtail 1.0 release notes

 		
 Wagtail 0.8.10 release notes

 		
 Wagtail 0.8.8 release notes

 		
 Wagtail 0.8.7 release notes

 		
 Wagtail 0.8.6 release notes

 		
 Wagtail 0.8.5 release notes

 		
 Wagtail 0.8.4 release notes

 		
 Wagtail 0.8.3 release notes

 		
 Wagtail 0.8.1 release notes

 		
 Wagtail 0.8 release notes

 		
 Wagtail 0.7 release notes

 		
 Wagtail 0.6 release notes

 		
 Wagtail 0.5 release notes

 		
 Wagtail 0.4.1 release notes

 		
 Wagtail 0.4 release notes

_static/images/screen_wagtail_redirects.png
<« ADD REDIRECT

Redirect from: *

Permanent: v
Recommended. Permanent redirects ensure search engines forget the old page (the Rediret from) and index the new page
instead.

Redirect o 2

page:

Redirect to any

URL:

_static/images/tutorial/tutorial_1.png
<« c @ ® 127.00.1:8000 @ %) | Q search N @

’Awagtail View the release notes

Welcome to your new Wagtail site!

Please feel free to join our community on Slack, or get
started with one of the links below.

9 Wagtail Documentation < Tutorial = Admin Interface
Topics, references, & how-tos Build your first Wagtail site Create your superuser first!

_static/images/userbar-corner.png

_static/images/tutorial/tutorial_2.png
o0 e |] Wagtail - Dashboard x

L C' [127.0.0.1:8000/admin/

»

Explorer

Images

Documents

Settings

admin

< Logout

_static/images/tutorial/tutorial_10.jpg
®©® [y secondPost x e

C | ® 127.0.0.1:8000/blog/second-post/

Second Post

Nov. 1,2016

Posted in:

@ Places @ Events

Something something something

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrad
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute inure dolor in reprehenderit in voluptate velit esse clium dolore eu fugiat nulla
‘pariatur. Excepteur sint occaecat cupidatat no proident, sunt in culpa qui officia deserunt moilist anim id est laborum.

Some stone sheep Cauldron Snout High Cup

_static/images/tutorial/tutorial_4a.png
% Explorer

Ga) Images

|

1

~ Homepage

o we [+ socmome

TITLE

First Post

1 day, 22 hours
ago

TYPE

Blog Page

LIVE

STATUS

LIVE

Privacy

PUBLIC

_static/images/tutorial/tutorial_3.png
o0 e | ') Homepage x\@
€ & C []127.0.0.1:8000 B & RIS

‘Welcome to our new site!

_static/images/tutorial/tutorial_5.png
® ® ® /| Wagtail - Editing Blog Pag- x

& C' [} 127.0.0.1:8000/admin/pages/4/edit/ [] »

TITLE: *

First blog post

Explorer
POST DATE: *
Images

B Documents 2015-05-14

Settings

INTRO: *

Hello world!

B H2 H3 H4 H5 = i D C % B @ ©
ll.orem ipsum dolorsit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
Site Admin dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex

< Logout SAVE DRAFT @ PREVIEW Last modified: 14 May 2015, 10:42 a.m. by Site Admin o\

_static/images/tutorial/tutorial_4b.png
Choose which type of page you'd like to create.

Pages using Blog Index Page

Explorer

Pages using Blog Page

Images

Pages using Home Page

Documents

Settings

_static/images/tutorial/tutorial_6.jpg
® O ® /[second Post x

& C | ® 127.0.0.1:8000/blog/second-post/

Second Post

Nov. 1,2016

Something something something

Some stone sheep

Return to blog

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrad
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute inure dolor in reprehenderit in voluptate velit esse cilium dolore u fugiat nulla

‘pariatur, Excepteur sint occaecat cupidatat no proident, sunt in culpa qui officia deserunt moilist anim id est laborum.

Cauldron Snout High Cup

_static/images/screen36_users_interface.png
+

ADD A USER

NAME

jamesg

@ relicity
Edward Baldry
Ged Barker

Glenn Barr

USERNAME -

jamesg

felcity

eddbaldry

ged.barker

glenn.barr

LEvEL

Admin

Admin

Admin

Admin

STATUS

Acve

Acve

Acve

Acve

Acve

_static/images/screen35_users_menu_item.png
5 Explorer
&) Images
B Documents
0, Snippets

% Settings

& Users

Groups

4 Redirects

% Promoted search
results

_static/images/screen38.5_popular_search_results.png
POPULAR SEARCH TERMS

Search term: Search
cambodia 116
oil 78
blood diamonds 75
angola 64
conflict diamonds 62
santander 62
brazil 51

sierra leone 29

_static/images/screen37_promoted_menu_item.png
Search

= Explorer
@ images
B Documents
@, Snippets

2 Settings

Settings
& Users
& Groups
4 Redirects

% Promoted search
resuts

_static/images/screen39_add_promoted_result.png
v ADD EDITOR'S PICK

@ Promoted search results are a means of recommending specific pages that might not organically come high up in search results. E.g recommending your primary donation page to a
user searching with the less common term "giving".

The "Search term(s)/phrase" field below must contain the full and exact search for which you wish to provide recommended results, including any misspellings/user error. To help,
you can choose from search terms that have been popular with users of your site.

CHOOSE FROM POPULAR SEARCH TERMS

Enter the fullsearch string to match. An exact match is required for your Editors Picks to be displayed, wildcards are NOT allowed.

Page: ‘CHOOSE APAGE

Description:

+ ADDRECOMMENDED PAGE

SAVE

_static/images/screen38_promoted_results_listing.png
Y PROMOTED SEARCH RESULTS 4 ADD NEW PROMOTED RESULT

‘SEARCH TERMIS) PROMOTED RESULTS. VIEWS (PAST WEEK)

turkmenistan gas Turkmenistan, Its A Gas, All That Gas? 0

; Wil St Shine for South Sudan?, Blueprint or Prosperity, Three years in, is
south sudan oil o Pty Threey:

2
South Sudan's ol criving its crisis?
South Sudan, Willtar Shine for South Sudan? , Blugprint o Prosperity .

south sudan P perty 13
Fueling Mistrust

cambodia oil Country For Sale 3

Surrey Mansion Used To Hide Suspect Funds, Former Kyrgyz presidents
blood red carpet sonives in £3.5m Surrey mansion despite convictions for attempted 2
murder of UK citizen and grand corruption at home

_static/images/screen41_redirects_menu_item.png
& Explorer

Post

News

ges
B Documents

o Settings

Settings

& Users

L3

Groups
Q@ sites
& Collections

4 Redirects

_static/images/screen40_table_block.png
Pages

Images

Documents

Settings

some clothes

TABLE

Row header

Column header

Table caption

shoes

SAVE DRAFT

v

Display the first row as a header.

Display the first column as a header.

Clothing table

n reader

Display caption for user with s

shirt

Insert row above
Insert row below
Insert column left
Insert column right
Remove rows

Remove columns

N @ PREVIEW.

pants

TABLE

®

_static/images/screen43_redirects_edit_redirect.png
«1 EDITING /ni

Redirect from: * /about/news

From site: Your Site [default]

Permanent: v
Recommended. Permanent redirects ensure search engines forget the ld page (e ‘Redirect fom) and index the new page
instead.

Redirect to a News

page:

[(ctemcronce] [[croose Anomew page | ((Eoim T phce

Redirect to any
URL:

DELETE REDIRECT

_static/images/screen42_redirects_interface.png
1 REDIRECTS + ADDREDIRECT

#ROM sme T TveE
Inew Your Site [default News PERMANENT
Inews/a-new-item-which-is-no-longer-available Your Site [default hutp://www.example.com PERMANENT

Page10f 1.

_static/images/screen11.1_streamfield_richtext.png
BODY *

B I | H2 H3 H4

We'd love to hear from you! & Drop us a line to let us know what you think.

FORM FIELDS

_static/images/screen11.3_keyboard_shortcuts_.gif
BODY *

We'd love to hear from you! % Drop us a line to let us know what you think.

_static/images/screen11.2_toolbar_tooltips.png
BODY *

B I | H2 H3 H4

We'd love to Hea’&i;g EIB ! <, Drop us a line to let us know what you think.

FORM FIELDS

_static/images/screen11.9_streamfield_reordering.png
frustrated many times on
h for a particular user. In
rname or email address.

PARAGRAPH

1

1

o

_static/images/screen11.8_adding_new_blocks.png
STREAMFIELD

Here is some awesome rich text that can be added into this section.

* Witha
=+ bulleted.
o list

T

Paragraph

66

Bustout Pulquote

_static/images/screen12_edit_screen_overview.png
H EDITING BLOG PAGE Djan;

CONTENT PROMOTE £ SETTINGS

TTLE

Django: A guide to upgrading your application

AUTHOR

Author: Neal Todd

[cEan cioice) [CHODSE ANOTHER PAGE | EOIT TS PAGE

+ ADDAUTHOR

_static/images/screen11_empty_streamfield.png
STREAMFIELD

T! TI TI T T =

H2 H3 Ha Intro Paragraph Aigned
image
* 66 <>
Bustout Puliquote Raw
HTML

_static/images/screen14_add_main_image.png
TmE *

(@) The page ttle as youd like it
tobe seen by the public

A standard page

MAIN IMAGE

CHOOSE AN IMAGE

CREDIT

_static/images/screen13_publish_menu.png

_static/images/screen10_blank_page_edit_screen.png
> Torchbox >

CONTENT

TmE *
Explorer

@) Images
MAIN IMAGE

CREDIT

_static/images/screen09_page_type_selection.png
Choose which type of page you'd like to creatt

Explorer

_static/images/screen03_explorer_menu.png
B

(]

o

Y |

Pages

Images

Documents

Snippets

Forms

Settings

< Home Page

BB cventsindex

[] Blog index

BB standard index v + DRAFT

[] People

Contact page

_static/images/screen02_dashboard_editor.png
. Welcome to the bakerydemo Wagtail CMS

Admin User

30 37 0

Pages. Images Documents

PAGES AWAITING MODERATION

TITLE PARENT TYPE EDITED

Welcome to the Wagtail Bakery! & Root Home page 1 minute ago
by Admin User
Reports

Sett

YOUR LOCKED PAGES

SEE ALL LOCKED PAGES

TITLE LOCKED AT

Welcome to the Wagtail Bakery! g 1 minute ago

YOUR MOST RECENT EDITS

TITLE DATE STATUS

Welcome to the Wagtail Bakery! g 1 minute ago

_static/images/screen05_explorer_page.png
Torchbox

EDT | LVE MOVE DELETE |UNPUBLSH + ADD CHILD PAGE 1 week ago Homepage e
B Tme UPDATED STATUS
Work L
Jobs. o dex Pay

_static/images/screen04_search_screen.png
Q searc
THERE ARE 8 MATCHING PAGES

OTHERSEARCHES @ images M Documents & Users

e

Wagtail

Wagtail in one line

Meet Wagtail, our new CMs

PARENT

Work

Blog

Blog

UPDATED

6 months,
1 week ago

6 months,
1 week ago

6 months,
1 week ago

Tvee

Work Page

Blog Page

Blog Page

STATUS

_static/images/screen07_explorer_page_breadcrumb.png
> Homepsge > Schools &Programmes

School of Fine Art

_static/images/screen06_explorer_page_arrow.png
TE - STATUS

sundardindex [ove)

_static/images/screen08_add_page_button.png
School of Fine Art

EDT | LVE MOVE | DELETE | UNPUBLISH + ADD CHILD PAGE

_static/images/screen08.5_reorder_page_handles.png
4 SORT TITLEw

Locations

Blog

_static/images/revision-ui.png
08 Mar 2016 11:17 by e matthew (Current draft)

Explorer

08 Feb 2016 19:00 by (@) matthew

<

05 Feb 2016 17:28 by @) dave

_static/images/releasenotes_2_7_streamfield_styles.png
Paragraph block

H2 H3 H4

Heat is gradually transferred "from the surface of cakes, cookies, and breads to their centre. As heat travels through it
transforms batters and doughs into baked goods with a firm dry crust and a softer centre" 2] Baking can be combined
with grilling to produce a hybrid barbecue variant by using both methods simultaneously, or one after the other. Baking
is related to barbecuing because the concept of the masonry oven s similar to that of a smoke pit.

x

TI Heading block o Paragraph biock

66 Block quote G Embed block

Imageblock A

CHANGE IMAGE (_EDIT THIS IMAGE

2]

_static/images/screen01_login.png
Sign in to Wagtail

Forgotten it?

SIGN IN

_static/images/screen26.5_promote_tab.png
CONTENT PROMOTE £ SETTINGS

COMMON PAGE CONFIGURATION

Slug: * drupal-8-your-guide-views-core

The name of the page as it wil appear in URLS . htp://domain.com/blog/Tmy-slugl/

Page title:

Optional. ‘Search Engine Friendly'tile. This will appear at the top of the browser window.

Show in menus:

Whether a ink to this page will appear in automaticaly generated menus

Search description:

_static/images/screen27_docs_icon.png

_static/images/screen26_reordering_multiple_items.png
Link: Homepage

CLEARCHOICE | [CHOOSE ANOTHER PAGE

_static/images/screen29_documents_page.png
+ ADDADOCUMENT

Collection: All collections

TITLE

VALIS Risk Analysis Information Pack

Special Project Coordinator Info Pack

Senior Tutor in Printed Textiles Information Pack

Senior Tutor in Mixed Media Information Pack

FILE

VALIS_Risk_Analysis_Information_Pack.pdf

Special_Project_Coordinator_Info_Pack.pdf

Senior_Tutor_in_Printed_Textiles_Information_Pack.pdf

Senior_Tutor_in_Mixed_Media_Information_Pack.pdf

COLLECTION

Info Packs

Info Packs

Info Packs

Root

CREATED

2 months, 2 days ago

2 months, 2 weeks ago

2 months, 2 weeks ago

5 months, 1 week ago

_static/images/screen28_docs_form.png
B} CHOOSE ADOCUMENT

SEARCH UPLOAD

Search term: Search

Al collections

Collection:
LATEST DOCUMENTS
TTLE - FILE UPLOADED
THE-SEPARATION-OF-WHITE-AND-PIED- T

THE-SEPARATION-OF-WHITE-AND-PIED-

WAGTAILS.pdf WAGTAILS paf

Page10f1.

_static/images/screen31_images_page.png
LATEST IMAGES

“The best Wagtaill Grey wagtail by Lip Kee Wagtail collects insects by Margrit Hopalong wagtail by Ruth Fickr

Wagtail at Borovoye, Kazakhstan by Pied wagtail by Marie Hale White wagtail by Koshy Koshy
Ken and Nyetta

Wagtail Sproing by Jim Bendon

_static/images/screen30_documents_edit_page.png
B EDITING TPS Guidelines Original

FILESIZE

Title: * TPS Guidelines 933 KB

B TPS_REPORT_FULL_GUIDELINES.pdf

File: *
Change document:
Browse... No file selected.
Collection: * Other

SAVE DELETE DOCUMENT

_static/images/screen33_snippet_menu.png
0y SNIPPETS

Adverts Boned textlinks displayed inth sidebar. Applied goballyor o individual pages. Usable o al pages.
Contact snippets Displayed in main body. Usable on standard ndex page only.
Custom content modules Navigational content orindex pages. A seres of mages inraws of three withtes and ks, displayed in main bocy. Usable

only on standard index page:

Reusable text snippets i txt ik with . Displayed n mai body.Usabl oy on standard page and o page.

_static/images/screen32_image_edit_page.png
1time

(&) EDITING django_upgraded.jpg

Focal point (optional)

Title: django_upgraded jpg To define this image's most important region, drag a box over the image 1548908
below.

& django_upgraded.jpg (1548x908) 650.4 kB
File:

Change image file

Ghoosa File | NO file chosen

Supported formats: GIF, JPEG, PNG. Maximum fsize; 100 MB
Credit: Gordon Tarpley htps://www flickr.com/photos/
Tags:

SAVE

_static/images/screen34_snippet_used_times.png
TITLE:

_static/images/screen17_upload_image.png
CHOOSE AN IMAGE

SEARCH UPLOAD

Title:

Another awesome Wagtail!

File:

[Choose Fite | No file chosen

_static/images/screen16_selecting_image_from_library.png
[za] CHOOSE AN IMAGE

UPLOAD

Search term:

SEARCH

Pnpu\artau

S Wallpaper

LATEST IMAGES

TED*Amsterdam

_static/images/screen19_link_form.png
B CHOOSE A PAGE

Internal link | Externallink | Email link
EXPLORER

& > romepage >

e e staTUs
Standard

Schools & Programmes . o

School of Architecture School UvE >
Page

School of Communication School >
Page —

_static/images/screen18_image_format.png
CHOOSE A FORMAT

Format:

® Full width
Left-aligned

Right-aligned
Alt text:

Grey wagtail by Lip Kee

INSERT IMAGE

_static/images/screen21_video_in_editor.png
H2 H3 H4

_static/images/screen20_insert_video_form.png
INSERT EMBED

URL: ‘ https://vimeo.com/86036070

INSERT

_static/images/screen23_validation_error.png
jue to vali

—_1n
CONTENT PROMOTE m

I T ¢

“Thisfield is required.

_static/images/screen22_required_field.png
TITLE: *

The title is required||

_static/images/screen25_multiple_items_open.png
RELATED LINKS

Link: CHOOSE A PAGE

External hitp:/Awww.thelink com
link:
Link text: The first link

Link title (or leave blank to use page ttle

+ ADDRELATED LINKS

_static/images/screen24_multiple_items_closed.png
! e L

_static/images/screen15_carousel_form.png
Image: ‘CHOOSE AN IMAGE

Overlay text:

External
link:

Vimeo URL:
Poster (CHOOSE AN IMAGE
image:

4+ ADD CAROUSEL CONTENT

_static/images/bold_test.png

_static/images/bad_horizontal_rule.png

_static/images/collections_create_collection.png
= ADD COLLECTION

Doughnut Images|

Bread Categories

{4 Bakery Misc
Images
Documents
Snippets

Forms

Settings

_static/images/collections_add_to_collection.png
® [ia] ADD IMAGES

Drag and drop images into this area to upload immediately.

Search Qa
Supported formats: GIF, JPEG, PNG. Maximum filesize: 10.0 MB.
& Pages > Root
Bakeries
) Bread Categories > BreadPage Images
FYETSI v Doughnut Images
{4 Bakery Misc > collection: [We/ 48

@ Images

_static/minus.png

_static/logo.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_images/collections_edit_img_view.png
& Pages

) Bread Categories

{4 Bakery Misc

@ Images
Documents
Snippets

Forms

Settings

[ca) EDITING r:

TITLE:

raspberry-iced jpg

FILE:

@ raspberry-iced.jpg (900x620)

Change image file:

Choose File | No file chosen

mats: GIF, JPEG, PNG. Maximum flesize: 1

COLLECTION:

Doughnut Ima;

FOCAL POINT (OPTIONAL)
To define this image's most important
region, drag a box over the image above.

MAX DIMENSIONS.
900620

FILESIZE
193.7 KB

_images/collections_list.png
earch

Bread Categories >
Bakery Misc

@ Images
Documents
Snippets

Forms

Settings

= COLLECTIONS

NAME

Bakeries
BreadPage Images

Other

+

ADD A COLLECTION

_images/collections_create_collection.png
= ADD COLLECTION

Doughnut Images|

Bread Categories

{4 Bakery Misc
Images
Documents
Snippets

Forms

Settings

_images/collections_create_collection_upload_images.png
+ ADDAN IMAGE

Collection: Doughnut Images

& Pages You haven't uploaded any images in this collection. Why not upload one now?

) Bread Categories >

{4 Bakery Misc

_images/collections_privacy_button.png
Privacy

_images/collections_add_to_collection.png
® [ia] ADD IMAGES

Drag and drop images into this area to upload immediately.

Search Qa
Supported formats: GIF, JPEG, PNG. Maximum filesize: 10.0 MB.
& Pages > Root
Bakeries
) Bread Categories > BreadPage Images
FYETSI v Doughnut Images
{4 Bakery Misc > collection: [We/ 48

@ Images

_static/down.png

_static/down-pressed.png

_static/file.png

_static/images/page-locking.png
E EDITING Homepage Status A%
privacy [N

Edit lock

CONTENT PROMOTE £ SETTINGS

_static/images/releasenotes_1_5_modeladmin.png
XX T pr———

%A 8

€ = € [[3 localnost:8000/admin/demo) country/Tcontinent_exact

FLTER

By continen

@ Countes

age 1 af 1

_static/images/releasenotes_1_5_explorermenu.png
B TmE

James Joyce

David Mitchell

Delete

_static/images/releasenotes_1_8_pageprivacy.png
@ PAGE PRIVACY

A Privacy changes apply to all children of this page too.

Visibility: *

Public
Private, accessible to logged-in users
Private, accessible with the following password

Private, accessible to users in specific groups

Moderators
Editors.
staff

_static/images/releasenotes_1_5_unlink.gif
mo
B I . H2 | H3 | H4 H5

The origin of the genus appears to be in the general area of Eastern Siberia/Mongolia. Wagtails spread
rapidly across Eurasia and dispersed to Africa in the Zanclean| 1

_static/images/releasenotes_1_9_revisioncomparison.png
® © ® g wagtai - Comparing Gala Dir x 'y

@ localhost:8000 2 comp: 0 %5 » o

EIRLTl (Ve revisions

FELDS cn

Location:

Carousel

items:
uments

o, soip

_static/images/releasenotes_1_9_m2m.png
CATEGORIES

Geography
Entertainment
History
+ Arts & Literature
V' science & Nature

Sports & Leisure

_static/images/image_filter_fill_focal_close.png

_static/images/image_filter_fill_focal.png

_static/images/image_filter_min.png
500

_static/images/image_filter_max.png

_static/images/draftail_entity_stock_source.gif
BODY *

Anyone following Elon Musk’s STSLA should also Q

_static/images/draftail_entity_stock_rendering.png
Anyone following Elon Musk’s $TSLA should also look into $BTC ——.

_static/images/editor-management.png
Name: * Editors

OBJECT PERMISSIONS

NAME

Document

Image

Group

User

User profile

OTHER PERMISSIONS

NAME

ADD

CHANGE

DELETE

_static/images/drupal_content_type.png
Home » Administration » Structure » Content types » Content types » News item

Newsitem o (T (TR wwwcernc: (R TR (TN

Show row weights

LABEL MACHINE NAME FIELD TYPE WIDGET OPERATIONS
tab closed
E classes group-content
4+ Content group_content Vertical tab. D e delete

field-group-tab
required_fields yes

& Tite title Node module element

% Publication date feld_media_date_published Date (150 formar) Pop-up calendar edit delete
Check boxes/radi

% News section feld_news_section List (text) eck boxes/rado gy delete
buttons

- News type feld_news_type Term reference Select list edit delete
Text Itiple

“ Introduction field_intro Long text CIo(erlR edit delete

rows)

Text ith
& Body feld_body Long text and summary e areauing edit delete
summary

_static/images/image_filter_fill.png

_static/images/focal-point-adjustment.jpg
Focal point (optional)

To define this image's most important region

X over el

_static/images/collections_edit_img_view.png
& Pages

) Bread Categories

{4 Bakery Misc

@ Images
Documents
Snippets

Forms

Settings

[ca) EDITING r:

TITLE:

raspberry-iced jpg

FILE:

@ raspberry-iced.jpg (900x620)

Change image file:

Choose File | No file chosen

mats: GIF, JPEG, PNG. Maximum flesize: 1

COLLECTION:

Doughnut Ima;

FOCAL POINT (OPTIONAL)
To define this image's most important
region, drag a box over the image above.

MAX DIMENSIONS.
900620

FILESIZE
193.7 KB

_static/images/collections_create_collection_upload_images.png
+ ADDAN IMAGE

Collection: Doughnut Images

& Pages You haven't uploaded any images in this collection. Why not upload one now?

) Bread Categories >

{4 Bakery Misc

_static/images/collections_privacy_button.png
Privacy

_static/images/collections_list.png
earch

Bread Categories >
Bakery Misc

@ Images
Documents
Snippets

Forms

Settings

= COLLECTIONS

NAME

Bakeries
BreadPage Images

Other

+

ADD A COLLECTION

_static/images/collections_privacy_overlay.png
@ COLLECTION PRIVACY

© Privacy settings determine who is able to view documents in this collection.

lity: @ Public
Private, accessible to logged-in users
Private, accessible with the following password

Private, accessible to users in specific groups

_images/draftail_entity_stock_source.gif
BODY *

Anyone following Elon Musk’s STSLA should also Q

_images/drupal_content_type.png
Home » Administration » Structure » Content types » Content types » News item

Newsitem o (T (TR wwwcernc: (R TR (TN

Show row weights

LABEL MACHINE NAME FIELD TYPE WIDGET OPERATIONS
tab closed
E classes group-content
4+ Content group_content Vertical tab. D e delete

field-group-tab
required_fields yes

& Tite title Node module element

% Publication date feld_media_date_published Date (150 formar) Pop-up calendar edit delete
Check boxes/radi

% News section feld_news_section List (text) eck boxes/rado gy delete
buttons

- News type feld_news_type Term reference Select list edit delete
Text Itiple

“ Introduction field_intro Long text CIo(erlR edit delete

rows)

Text ith
& Body feld_body Long text and summary e areauing edit delete
summary

_images/collections_privacy_overlay.png
@ COLLECTION PRIVACY

© Privacy settings determine who is able to view documents in this collection.

lity: @ Public
Private, accessible to logged-in users
Private, accessible with the following password

Private, accessible to users in specific groups

_images/draftail_entity_stock_rendering.png
Anyone following Elon Musk’s $TSLA should also look into $BTC ——.

_images/image_filter_fill.png

_images/image_filter_fill_focal.png

_images/editor-management.png
Name: * Editors

OBJECT PERMISSIONS

NAME

Document

Image

Group

User

User profile

OTHER PERMISSIONS

NAME

ADD

CHANGE

DELETE

_images/focal-point-adjustment.jpg
Focal point (optional)

To define this image's most important region

X over el

_images/image_filter_fill_focal_close.png

_images/image_filter_max.png

_images/image_filter_min.png
500

_images/releasenotes_1_5_modeladmin.png
XX T pr———

%A 8

€ = € [[3 localnost:8000/admin/demo) country/Tcontinent_exact

FLTER

By continen

@ Countes

age 1 af 1

_images/releasenotes_1_5_unlink.gif
mo
B I . H2 | H3 | H4 H5

The origin of the genus appears to be in the general area of Eastern Siberia/Mongolia. Wagtails spread
rapidly across Eurasia and dispersed to Africa in the Zanclean| 1

_images/page-locking.png
E EDITING Homepage Status A%
privacy [N

Edit lock

CONTENT PROMOTE £ SETTINGS

_images/releasenotes_1_5_explorermenu.png
B TmE

James Joyce

David Mitchell

Delete

_images/releasenotes_1_9_revisioncomparison.png
® © ® g wagtai - Comparing Gala Dir x 'y

@ localhost:8000 2 comp: 0 %5 » o

EIRLTl (Ve revisions

FELDS cn

Location:

Carousel

items:
uments

o, soip

_images/releasenotes_2_7_streamfield_styles.png
Paragraph block

H2 H3 H4

Heat is gradually transferred "from the surface of cakes, cookies, and breads to their centre. As heat travels through it
transforms batters and doughs into baked goods with a firm dry crust and a softer centre" 2] Baking can be combined
with grilling to produce a hybrid barbecue variant by using both methods simultaneously, or one after the other. Baking
is related to barbecuing because the concept of the masonry oven s similar to that of a smoke pit.

x

TI Heading block o Paragraph biock

66 Block quote G Embed block

Imageblock A

CHANGE IMAGE (_EDIT THIS IMAGE

2]

_images/releasenotes_1_8_pageprivacy.png
@ PAGE PRIVACY

A Privacy changes apply to all children of this page too.

Visibility: *

Public
Private, accessible to logged-in users
Private, accessible with the following password

Private, accessible to users in specific groups

Moderators
Editors.
staff

_images/releasenotes_1_9_m2m.png
CATEGORIES

Geography
Entertainment
History
+ Arts & Literature
V' science & Nature

Sports & Leisure

_images/revision-ui.png
08 Mar 2016 11:17 by e matthew (Current draft)

Explorer

08 Feb 2016 19:00 by (@) matthew

<

05 Feb 2016 17:28 by @) dave

_images/screen01_login.png
Sign in to Wagtail

Forgotten it?

SIGN IN

_images/screen02_dashboard_editor.png
. Welcome to the bakerydemo Wagtail CMS

Admin User

30 37 0

Pages. Images Documents

PAGES AWAITING MODERATION

TITLE PARENT TYPE EDITED

Welcome to the Wagtail Bakery! & Root Home page 1 minute ago
by Admin User
Reports

Sett

YOUR LOCKED PAGES

SEE ALL LOCKED PAGES

TITLE LOCKED AT

Welcome to the Wagtail Bakery! g 1 minute ago

YOUR MOST RECENT EDITS

TITLE DATE STATUS

Welcome to the Wagtail Bakery! g 1 minute ago

_images/screen05_explorer_page.png
Torchbox

EDT | LVE MOVE DELETE |UNPUBLSH + ADD CHILD PAGE 1 week ago Homepage e
B Tme UPDATED STATUS
Work L
Jobs. o dex Pay

_images/screen06_explorer_page_arrow.png
TE - STATUS

sundardindex [ove)

_images/screen03_explorer_menu.png
B

(]

o

Y |

Pages

Images

Documents

Snippets

Forms

Settings

< Home Page

BB cventsindex

[] Blog index

BB standard index v + DRAFT

[] People

Contact page

_images/screen04_search_screen.png
Q searc
THERE ARE 8 MATCHING PAGES

OTHERSEARCHES @ images M Documents & Users

e

Wagtail

Wagtail in one line

Meet Wagtail, our new CMs

PARENT

Work

Blog

Blog

UPDATED

6 months,
1 week ago

6 months,
1 week ago

6 months,
1 week ago

Tvee

Work Page

Blog Page

Blog Page

STATUS

_images/screen08_add_page_button.png
School of Fine Art

EDT | LVE MOVE | DELETE | UNPUBLISH + ADD CHILD PAGE

_images/screen08_add_page_button1.png
School of Fine Art

EDT | LVE MOVE | DELETE | UNPUBLISH + ADD CHILD PAGE

_images/screen07_explorer_page_breadcrumb.png
> Homepsge > Schools &Programmes

School of Fine Art

_images/screen08.5_reorder_page_handles.png
4 SORT TITLEw

Locations

Blog

_images/screen10_blank_page_edit_screen.png
> Torchbox >

CONTENT

TmE *
Explorer

@) Images
MAIN IMAGE

CREDIT

_images/screen11.1_streamfield_richtext.png
BODY *

B I | H2 H3 H4

We'd love to hear from you! & Drop us a line to let us know what you think.

FORM FIELDS

_images/screen09_page_type_selection.png
Choose which type of page you'd like to creatt

Explorer

_images/screen11.8_adding_new_blocks.png
STREAMFIELD

Here is some awesome rich text that can be added into this section.

* Witha
=+ bulleted.
o list

T

Paragraph

66

Bustout Pulquote

_images/screen11.9_streamfield_reordering.png
frustrated many times on
h for a particular user. In
rname or email address.

PARAGRAPH

1

1

o

_images/screen11.2_toolbar_tooltips.png
BODY *

B I | H2 H3 H4

We'd love to Hea’&i;g EIB ! <, Drop us a line to let us know what you think.

FORM FIELDS

_images/screen11.3_keyboard_shortcuts_.gif
BODY *

We'd love to hear from you! % Drop us a line to let us know what you think.

_images/screen13_publish_menu.png

_images/screen11_empty_streamfield.png
STREAMFIELD

T! TI TI T T =

H2 H3 Ha Intro Paragraph Aigned
image
* 66 <>
Bustout Puliquote Raw
HTML

_images/screen12_edit_screen_overview.png
H EDITING BLOG PAGE Djan;

CONTENT PROMOTE £ SETTINGS

TTLE

Django: A guide to upgrading your application

AUTHOR

Author: Neal Todd

[cEan cioice) [CHODSE ANOTHER PAGE | EOIT TS PAGE

+ ADDAUTHOR

_static/images/tutorial/tutorial_7.png
[BN Our Blog X CCA
&« C ® 127.0.0.1:8000/blog/ * @ % S

Our Blog

Everything we think about everything.

First Post

Introducing this topic...

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Second Post

Something something something

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Third Post

The intro

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nos
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pe
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

_static/images/tutorial/tutorial_9.png
-

‘ ® © ® [Tags Used in Our Blog x \\
* © 4« 00¢

& © ‘ ® 127.0.0.1:8000/tags/?tag=bicycles

Showing pages tagged "bicycles"

First Post
Revised: Oct. 27,2016, 12:40 a.m.

Third Post
Revised: Oct. 27,2016, 12:03 a.m.

_static/images/tutorial/tutorial_8.png
©